
BonnMotion

a Mobility Scenario Generation and Analysis Tool

Documentation

Version: December 22, 2010

Copyright c©2002-2010 University of Bonn

Documentation -2- Bonnmotion

Contents

1 Legal notice 4

2 Contact information 4

3 Introduction 4

4 Installation 4

4.1 Installation on UNIX operating systems . 5

4.2 Installation on Microsoft Windows operating systems 5

5 Running 5

6 Scenario generation 5

6.1 The Random Waypoint model (”RandomWaypoint”) 6

6.2 The Manhattan Grid model (”ManhattanGrid”) 7

6.3 Gauss-Markov models . 7

6.3.1 The original Gauss-Markov model (”OriginalGaussMarkov”) 7

6.3.2 The Gauss-Markov model (”GaussMarkov”) 8

6.4 The Reference Point Group Mobility model (”RPGM”) 8

6.5 Static scenarios (”Static”) . 8

6.6 Disaster Area model (”DisasterArea”) . 9

6.7 Random Street (”RandomStreet”) . 9

6.8 Random Direction Model (”RandomDirection”) 9

6.9 Random Walk Model (”RandomWalk”) . 9

6.10 Probabilistic Random Walk Model (”ProbRandomWalk”) 10

6.11 Column Mobility Model (”Column”) . 10

6.12 Nomadic Community Mobility Model (”Nomadic”) 10

6.13 Pursue Mobility Model (”Pursue”) . 10

6.14 Chain Model (”ChainScenario”) . 11

7 Converting scenarios to other formats 12

7.1 ns-2 . 12

7.2 Glomosim / Qualnet . 13

7.3 The ONE . 13

7.4 XML . 13

7.5 IntervalFormat . 13

7.6 WiseML . 14

8 Scenario analysis 15

8.1 The Statistics application . 15

8.2 The LinkDump application . 16

8.3 The Dwelltime application . 16

9 Scenario visualisation 16

10 Acknowledgments 16

[Page 2]

Bonnmotion -3- Documentation

References 17

[Page 3]

Documentation -4- Bonnmotion

1 Legal notice

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

2 Contact information

eMail:

Nils Aschenbruck 〈tacnet@cs.uni-bonn.de〉
URL:

http://bonnmotion.net.cs.uni-bonn.de/

Postal address:

Nils Aschenbruck
Institute of Computer Science 4, University of Bonn
Roemerstr. 164, 53117 Bonn, Germany

3 Introduction

BonnMotion is a Java software which creates and analyses mobility scenarios. It is developed
within the Communication Systems group at the Institute of Computer Science 4 of the
University of Bonn, Germany, where it serves as a tool for the investigation of mobile ad hoc
network characteristics. The scenarios can also be exported for the network simulators ns-2,
GloMoSim/QualNet, COOJA, MiXiM and ONE.

4 Installation

To use this software, you need to have a JDK or JRE installed. It has been compiled and
tested with Java v1.5.0 18.

During the installation, a few other shell scripts / batch files are created in the ”bin”
folder, which you can move and rename as you like:

• ”bm” is a wrapper that starts the BonnMotion application. Starting it without com-
mand line parameters prints a detailed help message.

• ”compile” compiles the sources. By default, only applies to files that were changed after
the last compilation. To re-compile all sources, use ”compile all”.

• ”makedoc” uses javadoc to create a source code documentation.

[Page 4]

http://bonnmotion.net.cs.uni-bonn.de/

Bonnmotion -5- Documentation

Since this distribution does not include pre-compiled class files, the ”compile” script needs
to be executed before the first usage of BonnMotion.

4.1 Installation on UNIX operating systems

If you are using a UNIX platform, simply unpack the archive and run the ”install” script.
You will then be asked for the location of your Java binary path, i.e. the directory containing
the Java interpreter and possibly the Java compiler and the javadoc utility. As already stated
above, the source files need to be compiled before BonnMotion can be used for the first time.
Therefore, change to the ”bin” directory and run the ”compile” script.

NOTE: We have not yet run our shell scripts on other platforms than Linux or Cygwin.
We would be happy if you informed us about changes necessary to run them under other
operating systems so we can incorporate them into our distribution.

4.2 Installation on Microsoft Windows operating systems

NOTE: The batch files for MS Windows have not yet been thoroughly tested.

If you are using Microsoft Windows, please edit the two variables JAVAPATH and BON-
NMOTION in the ”install.bat” and then execute it.

5 Running

All applications described below are started via the ”bm” wrapper script. The syntax is as
follows:

bm 〈parameters〉 〈application〉 〈application parameters〉

The application can be a mobility model or e.g. the Statistics application used to analyse
scenario characteristics.

Starting the script without command line parameters prints further help. Usage examples
are given in the sections below.

6 Scenario generation

Currently, there are several mobility models available, which are introduced later on with some
comments on implementation details. For further details on the models themselves, please re-
fer to the literature. Various synthetic models were proposed during last decade. There
have been several general surveys [Camp et al. 2002, Bettstetter 2001, Bai / Helmy 2004,
Musolesi / Mascolo 2008] as well as some specific ones for vehicular models [Hoogendoorn / Bovy 2001].

There are two possibilities to feed input parameters into the scenario generation: The first
is to enter the parameters on the command line, and the second is to have a file containing
the parameters. These two methods can also be combined; in this case, the command line
parameters override those given in the input file.

The scenario generator writes all parameters used to create a certain scenario to a file.
In this way, settings are saved and particular scenario parameters can be varied without the
need to re-enter all other parameters.

[Page 5]

Documentation -6- Bonnmotion

Important parameters used with all models are the following: The node number is set
with -n, the scenario duration (in seconds) with -d and the -i parameter specifies, how many
additional seconds at the beginning of the scenario should be skipped. With -x and -y, the
width and height (in metres) of the simulation area are set. With -R, the random seed can
be set manually.

Cutting off the initial phase is an important feature and therefore, -i has a high default
value: It has been observed that with the Random Waypoint model, nodes have a higher
probability of being near the center of the simulation area, while they are initially uniformly
distributed over the simulation area. In our implementation of the Manhattan Grid model,
all nodes start at (0,0) for simplicity.

Usage examples:

bm -f scenario1 RandomWaypoint -n 100 -d 900 -i 3600

This creates a Random Waypoint scenario with 100 nodes and a duration of 900 seconds.
An initial phase of 3600 seconds is cut off.

A scenario is saved in two files: The first, with the suffix ”.params”, contains the complete
set of parameters used for the simulation. The second, with the suffix ”.movements.gz”
contains the (gzipped) movement data.

Now, you can take a look at the ”scenario1.params” file to see all parameters used for the
simulation, and if you wanted to create a similar scenario, only with a higher mobility, you
can do this with

bm -f scenario2 -I scenario1.params RandomWaypoint -h 5.0

which takes the whole parameter set from scenario1.params and overrides the maximum
speed with 5 m/s.

6.1 The Random Waypoint model (”RandomWaypoint”)

Our implementation includes a feature to restrict the mobiles’ movements: With ”-d 1”,
nodes move only along the x-axis, with ”-d 2”, nodes move either along the x- or along the
y-axis (with a probability of 0.5 each) and with the default ”-d 3”, it is the classical Random
Waypoint model as you know it.

Another feature is the ”-c” switch that causes positions to be chosen from a circle that
fits into the simulation area rather than from the simulation area itself.

Instead of choosing new destinations uniformly distributed from the simulation area, ”at-
traction points” can be defined with the ”-a” parameter, followed by the data characterising
the attraction points. Each attraction point is defined by four floating point numbers, in this
order: <x-coordinate>, <y-coordinate>, <intensity>, and <standard deviation>.

• The coordinates give the attraction point’s position.

• The intensity levels weight the attraction points: A point with an intensity x times as
high as another point’s will also attract a node with a probability which is x times as
high.

[Page 6]

Bonnmotion -7- Documentation

• The last parameter is the standard deviation of the Gaussian distribution with mean
0 that is used to determine the nodes’ distances to the attraction point on each of the
two dimensions (i.e., the distance to the attraction point does not follow a Gaussian
distribution, but a Rayleigh distribution).

The parameters for several attraction points are simply concatenated, seperated by com-
mas. For example, to place two attraction points on the simulation area, the first at (100,100)
with intensity 1 and standard deviation 20, the second at (350,200) with intensity 1.5 and
standard deviation 31, use ”-a 100,100,1,20,350,200,1.5,31”.

6.2 The Manhattan Grid model (”ManhattanGrid”)

The Manhattan Grid model is introduced in [ETSI 1998]. In this model, nodes move only on
predefined paths. The arguments -u and -v set the number of blocks between the paths. As
an example, ”-u 3 -v 2” places the following paths on the simulation area:

+ - + - + - +
| | | |
+ - + - + - +
| | | |
+ - + - + - +

Our implementation contains some (reasonable) modifications of the Manhattan Grid
model:

1) An additional parameter we introduce is the minimum speed of a mobile node. This is
helpful because the speed of a mobile can be arbitrarily close to 0 and since the model defines
that the speed is to be updated in distance intervals, there can be very long periods of very
slow node movement without this parameter.

2) The possibility to have nodes pause was added with help of two additional parameters:
The pause probability (if a node does not change its speed, it will pause with that probability)
and the maximum pause time.

Note that it is especially important to cut off an initial phase with this model, because in
our implementation, all nodes start at the same position (0,0).

6.3 Gauss-Markov models

6.3.1 The original Gauss-Markov model (”OriginalGaussMarkov”)

This implementation of the Gauss-Markov model follows the publication [Liang / Haas 1999].
In this implementation, the mean velocity vector mu is not specified directly; instead, the norm
is specified using ”-a” and a random vector with this norm is assigned to each station. Of
course, a norm of 0 yields only the vector (0,0). The implementation also allows the user to
specify a maximum speed. A velocity vectors with a larger norm will be multiplied with an
appropriate scalar to reduce the speed to the maximum speed.

The model has been adapted to deal with scenario borders in the following way: If a
station moves onto the border, its velocity vector as well as its expected velocity vector are
”mirrored”.

[Page 7]

Documentation -8- Bonnmotion

6.3.2 The Gauss-Markov model (”GaussMarkov”)

This is the implementation of the Gauss-Markov model, which rather follows the description
in [Camp et al. 2002], though it is not the same. The main commonalites are that for each
mobile node, two seperate values are maintained instead of one speed vector: The mobile’s
speed and its direction of movement. Also the default method of handling mobile nodes that
move out of the simulation area is closely related to [Camp et al. 2002]: Nodes may continue
to walk beyond the area boundary, which causes the next movement vector update not to be
based on the prior angle, but on an angle that brings the nodes back onto the field. Therefore,
the field size is automatically adapted to the node movements after scenario generation.

The main difference to [Camp et al. 2002] is that new speed and direction of movement
are simply chosen from a normal distribution with a mean of the respective old value (the
standard deviation is specified on the command line using -a and -s). Speed values are
constrained to a certain interval that can be specified on the command line using -m and -h:
If a newly chosen speed value is outside of this interval, it is changed to the closest value
inside of the interval (which is either the minimum or the maximum value).

The behaviour described above can be modified with several command line switches: Using
-b, the size of the simulation area is fixed and nodes simply ”bounce” at the area boundaries.
Using -u, the speed values outside of the valid speed interval are adapted in a way that leads
to a uniform distribution of node speeds (instead of peaks around the interval boundaries).

6.4 The Reference Point Group Mobility model (”RPGM”)

The implementation of this model [Hong et al. 1999] includes the possibility to have ”dy-
namic” groups: When a node comes into the area of another group, it changes to this new
group with a probability that can be set with ”-c <probability>”. Deactivate this feature
with ”-c 0”. Note that when this feature is activated, ”empty” groups may be moving along
the simulation area and nodes coming into their areas may change their memberships to these.

6.5 Static scenarios (”Static”)

By default, nodes in static scenarios are homogeneously distributed over the simulation area.
There are two possibilities for non-homogeneous node distributions:

• Attraction points can be defined with the ”-a” parameter; a detailed explanation of this
feature is given in the ”Random Waypoint” section.

• With the ”-l” parameter, the simulation area can be divided into several areas with
different node densities along its x-axis. Given the number n of density leves, each of
the n areas will contain a fraction of approximately 2 ∗ k/(n ∗ (n + 1)), 1 <= k <= n,
of the nodes. (The density decreases from left to right.)

The following example shall illustrate this: Distributing 150 nodes on a 300m x 300m field
with 3 density levels, approx. 75 nodes will lie within the rectangle area with the corners
(0,0) and (100,300), approx. 50 nodes will lie within (100,0) and (200,300) and approx. 25
nodes will lie within (200,0) and (300,300).

[Page 8]

Bonnmotion -9- Documentation

6.6 Disaster Area model (”DisasterArea”)

Creates scenarios according to [Aschenbruck et al. 2007].

• Tactical areas can be defined with the ”-b” parameter following a list of coordinates for
the area (seperated by ”,”). The last three values in this list are type, wanted groups
and transportgroups.

• Type can be 0 for incident location, 1 for patients waiting for treatment area, 2 for
casualties clearing station, 3 for technical operational command and 4 for ambulance
parking point.

• For every specified incident location there must be a patients waiting for treatment area
specified, for every patients waiting for treatment area a casualties clearing station and
for every ambulance parking point a casualties clearing station.

6.7 Random Street (”RandomStreet”)

Creates scenarios according to [Aschenbruck / Schwamborn 2010]. The path to the parameter
file containing the model parameter values (cf. Table 2 in [Aschenbruck / Schwamborn 2010])
can be specified with ”-p”. An example parameter file is located in the doc/RaSt example

folder. In addition to the model parameters mentioned in the paper, there are two more
parameters in the example file:

MeshNodeDistance This optional parameter adds a grid of static nodes to the scenario which
represent mesh nodes. More precisely, it specifies the distance between two neigboring
nodes (in meters). Setting this to −1 disables adding these static nodes to the scenario
which is also the default.

MaxORSRequestIterations Route requests to OpenRouteService may result in an error for
certain pairs of source and destination, especially for positions that are chosen randomly
as done within Random Street. Therefore, this parameter limits the maximum number
of retries for a route request, where a new random position is generated for each retry.
The default for this parameter is 30.

6.8 Random Direction Model (”RandomDirection”)

Creates scenarios described in [Camp et al. 2002]. A model that forces MNs to travel to
the edge of the simulation area before changing direction and speed. This model does not
suffer from the density waves in the center of the simulation space that Random Waypoint
model does. In this model, MNs choose a random direction in which to travel similar to the
Random Walk Mobility Model. An MN then travels to the border of the simulation area in
that direction. Once the simulation boundary is reached, the MN pauses for a specified time,
chooses another angular direction (between 0 and 180 degrees) and continues the process.

6.9 Random Walk Model (”RandomWalk”)

Creates scenarios described in [Camp et al. 2002]. A simple mobility model based on random
directions and speeds. In this mobility model, an MN moves from its current location to
a new location by randomly choosing a direction and speed in which to travel. The new

[Page 9]

Documentation -10- Bonnmotion

speed and direction are both chosen from predefined ranges, [speedmin, speedmax] and [0, 2π]
respectively. If an MN which moves according to this model reaches a simulation boundary,
it ”bounces” off the simulation border with an angle determined by the incoming direction.
The MN then continues along this new path. This model can be configured such that the
nodes continue along their path for a set amount of time or a set distance. This can be set
by the −t flag for time limited mode, or by the −s for distance limited mode. The desired
time or length should follow the flag after a space e.g., −t 10.

6.10 Probabilistic Random Walk Model (”ProbRandomWalk”)

Creates scenarios described in [Camp et al. 2002]. A model that utilizes a set of probabilities
to determine the next position of an MN. The model utilizes a probability matrix that defines
the probabilities of a node moving forwards, backwards, or remaining still in both the x and
y direction. Once the direction of travel has been determined, the node will travel with a
fixed speed (as per the Toilers’ code) for a specified allotment of time. This amount of time
is set with the −t flag. The desired time should follow the flag after a space, e.g., −t 15, for
15 seconds.

6.11 Column Mobility Model (”Column”)

Creates scenarios according to [Camp et al. 2002]. A group mobility model where the set of
MNs form a line and are uniformly moving forward in a particular direction. In this model
the user will specify the number of node and number of groups. The number of nodes must
be evenly divisible by the number of groups, i.e., all node group must be completely filled -
no lone nodes. The column of reference points picks a random orientation angle and random
movement vector. The nodes follow their individual reference point across the map. They
have a parameter, maxDist, that determines how far away their random movements around
their reference point may be - exactly like the Nomadic model.

6.12 Nomadic Community Mobility Model (”Nomadic”)

Creates scenarios according to [Camp et al. 2002]. A group mobility model where a set of
MNs move together from one location to another. An example scenario this model simulates
would be a guided tour of a city or museum. The tour guide and tourists move from spot to
spot and they would all roam around each particular location individually.

Each group of mobile nodes has an invisible reference node that they follow around the
simulation. Once the reference point changes, all of the mobile nodes travel to the new
location and begin roaming. Their roaming is defined by picking random locations within
some predefined roaming radius of the reference point. This maximum roaming distance is
defined by the −r flag.

6.13 Pursue Mobility Model (”Pursue”)

Creates scenarios according to [Camp et al. 2002]. This model attempts to represent nodes
tracking a single targeted node. This model could represent police forces chasing down a
criminal on the run. The model uses Random Waypoint with no pauses to move the pursued
target. The model uses one equation to update the position of each pursuing node:

[Page 10]

Bonnmotion -11- Documentation

new position = old position+ acceleration(target− old position) + random vector

Where acceleration(target − old position) is information on the movement of the node
being pursued and random vector is a random offset for each node. The random vector is
a vector in a random direction with a configurable magnitude by using the −m flag. You
will want to keep this magnitude low (0 - 10) to ensure the pursuing nodes maintain effective
tracking of the target.

6.14 Chain Model (”ChainScenario”)

The Chain model is not a model itself but a concatenation of implemented models described
in this document. In some cases it is necessary to model scenarios in which mobile nodes
behave in different ways depending on time and position. With the Chain model, the mobile
nodes’ final position of the N-1-th scenario is linked to the initial position of the N-th scenario.

The Chain model works in the following way: it permits to specify a few known models
(e.g., Random Waypoint, Manhattan, RPGM, etc.), each one with its own set of parameters
as they are defined in this documentation. Therefore, it is possible to define the behaviour of
each model separately. Each model that is part of the Chain must be enclosed by quotation
marks (””) in order to be distinguished from the rest.

In addition to the individual models, Chain model accepts two parameters: ”-m <mode>”
specifies if the initial positions of the N-th scenario have a delay of 2 seconds (mode = 1) or
not (mode = 0, default). The optional parameter ”-P” enables the generation of a set of files
for each individual scenario, in addition to the whole chain scenario.

There are two parameters which must be coordinated along all individual models. The
number of mobile nodes must be the same for all scenarios, otherwise chain scenario generation
will fail. The simulation area may differ between scenarios, but if the final positions of the
N-1-th scenario are out of the scope of the N-th scenario’s simulation area, generation will
also fail.

The following example generates a chain scenario named chainTest and concatenates a
RandomWaypoint and a ManhattanGrid scenario. The complete chain scenario will have a
duration of 400 seconds (200 sec. for each model), and 10 mobile nodes (remember that this
number must be the same for all models). Since the ”-m” parameter is defined as 1, a delay
of 2 seconds between the two scenarios will be introduced:

bm -f chainTest ChainScenario -m 1 -P ”RandomWaypoint -d 200 -n 10 -x 500 -y 500 -o
3” ”ManhattanGrid -d 200 -n 10 -x 500 -y 500”

An example of when chain model could help to model a scenario from reality, consider a
city with a campus (could be a factory, university, etc.). It could be interesting to model
mobility inside the campus, and after some time, to see what happens when students move
from campus to their homes.

[Page 11]

Documentation -12- Bonnmotion

+---------+---------+---------+---------+

| | | | |

| | | | |

| | | | |

+---------+---------+---------+---------+

| | | | |

| | | | |

| | | | |

+---------+---------+---------+---------+

| | | | |

| CAMPUS | | | |

| | | | |

+---------+---------+---------+---------+

The following line generates a chain scenario for this:

bm -f campus ChainScenario -m 1 ”RandomWaypoint -d 200 -n 10 -x 100 -y 100 -o 3”
”ManhattanGrid -d 200 -n 10 -x 400 -y 300 -u 4 -v 3”

7 Converting scenarios to other formats

The native format in which BonnMotion saves the movement traces is node-by-line waypoint
based. This means that there is one line for each node. This line contains all the waypoints.
A waypoint is a position at which the movement of a node (e.g. direction, velocity) changes.
A waypoint consists of:

• the simulation time in seconds at which the waypoint is reached by the node

• the x and y coordinates of the position of the waypoint.

7.1 ns-2

The ”NSFile” application is used to generate two files that can be integrated into a TCL
script to start an ns-2 simulation via the ”source” command.

The file with the suffix “.ns params” sets some variables needed to set up the simulation
in an array named “val”: the keys “x” and “y” refer to width and height of the simulation
area, ”nn” refers to the number of nodes and ”duration” to the duration of the simulation.

The file with the suffix ”.ns movements” schedules the movements of the node objects
that are expected to be in an array named ”node ”, numbered starting at 0. The simulator
object is expected to be in the variable ”ns ”.

As a side note, the ”NSFile” application places an additional margin around the simula-
tion area, because ns-2 versions up to 2.1b9a regularly crash when nodes move at the border of
the simulation area. (Actually, this has only been observed with the Manhattan Grid model
up to now, but this procedure is generally carried out just to play it safe.)

Usage example:

[Page 12]

Bonnmotion -13- Documentation

bm NSFile -f scenario1

creates the two files ”scenario1.ns params” and ”scenario1.ns movements”.

7.2 Glomosim / Qualnet

The ”GlomoFile” application creates files with the suffixes ”.glomo nodes” and ”.glomo mobility”,
which can be used with Glomosim (2.0.3) and Qualnet (3.5.1). Use the ”-q” switch for Qual-
net: This causes nodes to be numbered starting at 1, not at 0.

7.3 The ONE

The ”TheONEFile” application creates a file with the suffix ”.one”, which can be used with
the ONE simulator [Keränen et al. 2009]. Use the ”-l” parameter to set the sampling interval
between two positions of the same node (the default is 1s).

Usage example:

bm TheONEFile -f scenario1 -l 5

creates the file ”scenario1.one” with a sampling interval of 5s.

7.4 XML

The ”SPPXml” application is used to generate mobility files in XML format according to
the XML schema proposed by Horst Hellbrck as a standardised mobility file format for
the research program “Schwerpunktprogramm 1140” (http://www.tm.uka.de/forschung/
SPP1140/) of the DFG (Deutsche Forschungsgemeinschaft).

SPPXml has an additional parameter ”-r” that allows to specify a uniform radio range
for all nodes. If this parameter is omitted, a radio range of 250m is used. BonnMotion does
not use this radio range in any way. It is however required by the XML schema.

The XML schema corresponding to the XML files generated by ”SPPXml” is defined in:

http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd

The contrib directory furthermore includes a python program ”sppmob2bonnmotion.py”
that convertw XML mobility traces to the BonnMotion format. It has been tested with
Python 2.3.

7.5 IntervalFormat

The native format implies that during the simulations for each event the current node positions
have to be calculated based on the waypoints. If there are many events, this may have a
negative impact on the runtime of a simulation. An alternative is to use an interval based
approach. The nodes are regarded as stationary for an interval. The positions of the nodes
are updated periodically after each interval by a specific position update event. By doing so,
the current node positions do not have to be calculated for each event. However, the number
events is increased, which may also influence the runtime of a simulation negatively. A factor
that has a major impact in this context is the interval length. Smaller intervals yield higher

[Page 13]

http://www.tm.uka.de/forschung/SPP1140/
http://www.tm.uka.de/forschung/SPP1140/
http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd

Documentation -14- Bonnmotion

accuracy but also more events. Overall, it is a trade-off between the number of events and
the runtime per event.

Trace files in the BonnMotion’s native trace format can be transformed to an interval-
based format using the IntervalFormat application. The interval length can be specified using
the -l option. The default value is one second. The interval trace format is an interval-by-line
based. This means that there is one line for each interval of each node. A line consists of:

• the node number

• the simulation time in seconds (in intervals)

• the x and y coordinates of the position of the node for the interval

The IntervalFormat application prints the waypoints (ordered by node and time) for every
interval step.

• The used interval can be specified using the -l switch.

• Using the -s switch the header can be skipped

7.6 WiseML

WiseML [WISEBED Project 2009] is a description format allowing a standardized storage of
traces of experiments. It is based on GraphML and used within the WISEBED Project (http:
//www.wisebed.eu/). Each experiment trace is stored within one file and contains all needed
information to identify and reproduce a simulation trace. This BonnMotion application allows
the conversion of BonnMotion’s native format into WiseML.

The WiseML converter offers various command line switches to tune the output to the
desired format. You get a full list with bm -ha WiseML.

• -a <altitude>: Default z value (BonnMotion 1.5 does not support 3D traces).

• -c <compressionlevel>: Compression of the output (0 = NONE, 1 = No tabs, 2 = No
tabs, no newlines).

• -f <scenario>: BonnMotion scenario to convert.

• -F <filename>: Path to XML footer to include in output.

• -H <filename>: Path to XML header to include in output.

• -I: Output integer values for the timestamps instead of doubles.

• -L <double>: Interval length between two timestamps.

• -N <filename>: Path to nodeId names. Each row should contain one name.

[Page 14]

http://www.wisebed.eu/
http://www.wisebed.eu/

Bonnmotion -15- Documentation

8 Scenario analysis

8.1 The Statistics application

The ”Statistics” application is used to analyse a given scenario. There are two modes of
operation: The default is to calculate ”overall” statistics (averaged over the simulation time)
and the other mode is to calculate ”progressive” statistics (values of metrics for certain points
in time).

In its default mode, the application creates a file with the suffix ”.stats” containing the
following information:

• The relative mobility is independent of the transmission range and is calculated accord-
ing to [Johansson et al. 1999].

• The other figures are dependent on the transmission range, which is given in the first
column of every line.

• The second column gives the average node degree: To how many of the other nodes is
one node connected?

• The third column gives the average number of partitions: 1 means the network is
connected at all times, values larger than 1 indicate that this is not the case.

• The fourth column gives the degree of separation: How likely is it that two randomly
chosen nodes are within a connected component at a randomly chosen point in time?

• The fifth column gives the average link duration; only links that go up after the simu-
lation start and go down before the simulation end are taken into account.

• The sixth column gives the standard deviation of the previous measure.

• The seventh column gives the number of links considered in the calculation of the two
previous values.

• The eighth column is like the fifth, but this time, all links are counted.

• The ninth column gives the total number of links.

Alternatively to the statistics which are averaged over the whole simulation time, the
devolution of certain characteristics can be calculated. See the command line help and the
following examples.

Usage examples:

bm Statistics -f scenario1 -r 50,75,100

This writes the averaged statistics to ”scenario1.stats” for transmission ranges of 50, 75,
and 100 meters.

bm Statistics -f scenario1 -r 75 -P

[Page 15]

Documentation -16- Bonnmotion

This creates a file scenario1.stats 75.part, which gives the number of partitions each time
it changes.

bm Statistics -f scenario1 -r 50,100 -N -M 10

This creates the files ”scenario1.stats 50.nodedeg” and ”scenario1.stats 100.nodedeg” which
show the devolution of the node degrees. Furthermore, the files ”scenario1.stats 50.mincut”
and ”scenario1.stats 100.mincut” show the minimal cut of the topology every 10 seconds. It
is reasonable to specify such a time span for computations that cost much CPU time.

8.2 The LinkDump application

The LinkDump application prints information about every single link within a certain time
span of a scenario. This information can e.g. be used for a simulator that does not directly
model mobility at all.

Using the -d switch, only the link durations are printed. This offers more insight into the
distribution of link durations than the averaged value calculated by the Statistics application.
In this case, the -w switch prevents that wrong durations are printed out due to links that go
up before simulation begin or go down after simulation end.

8.3 The Dwelltime application

The Dwelltime application creates statistics how long nodes stay in which area of the simulated
region.

9 Scenario visualisation

”Visplot” is a very simple application that writes those positions to a file where a mobile
changes its speed or direction. This file can simply be visualised using e.g. gnuplot.

10 Acknowledgments

The first versions of this software were designed and implemented by Michael Gerharz and
Christian de Waal. Further extensions have been designed and implemented by Nils Aschen-
bruck, Alexander Bothe, Tracy Camp (CSM), Raphael Ernst, Elmar Gerhards-Padilla, Tim
Heinrich, Patrick Peschlow, Gary Scheid (CSM), Florian Schmitt, Matthias Schwamborn, and
Chris Walsh (CSM). Moreover, contributions to code and this documentation have been made
by Elmano Ramalho Cavalcanti and Martin Giachino.

The development of the first versions was supported in part by the German Federal Min-
istry of Education and Research (BMBF) as part of the IPonAir project.

Since 2008 BonnMotion is partially supported by CONET, the Cooperating Objects Net-
work of Excellence, funded by the European Commission under FP7 with contract number
FP7-2007-2-224053.

The project has also been partially supported by the National Science Foundation (under
CNS-0905513 and CNS-0848130). Any opinions, findings and conclusions, or recommen-
dations expressed in this material do not necessarily reflect those of the National Science
Foundation.

[Page 16]

Bonnmotion -17- Documentation

References

[Aschenbruck et al. 2007]
Aschenbruck, Nils, Gerhards-Padilla, Elmar, Gerharz, Michael, Frank,
Matthias und Martini, Peter: Modelling Mobility in Disaster Area Scenarios. In: Proc.
10th ACM-IEEE Int. Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Syste ms (MSWIM) (2007), S. 4–12

[Aschenbruck / Schwamborn 2010]
Aschenbruck, Nils und Schwamborn, Matthias: Synthetic Map-based Mobility
Traces for the Performance Evaluation in Opportunistic Networks. In: Proceedings of the
2nd International Workshop on Mobile Opportunistic Networking, MobiOpp 2010, Pisa,
Italy, February 22-23, 2010, ACM, 2010, S. 143–146

[Bai / Helmy 2004]
Bai, Fan und Helmy, Ahmed: A Survey of Mobility Models. 2004. – http://nile.

usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf

[Bettstetter 2001]
Bettstetter, Christian: Mobility modeling in wireless networks: categorization,
smooth movement, and border effects. In: ACM SIGMOBILE Mobile Computing and
Communications Review 5 (2001), Nr. 3, S. 55–66

[Camp et al. 2002]
Camp, Tracy, Boleng, Jeff und Davies, Vanessa: A Survey of Mobility Models for Ad
Hoc Network Research. In: Wireless Communication and Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications 2 (2002),
Sep., Nr. 5, S. 483–502

[ETSI 1998]
European Telecommunications Standards Institute (ETSI): Universal Mobile Telecom-
municatios System (UMTS) - Selection procedures for the choice of radio transmission
technologies of the UMTS. UMTS 30.03 version 3.2.0, TR 101 112. 1998

[Hong et al. 1999]
Hong, Xiaoyan, Gerla, Mario, Pei, Guangyu und Chiang, Ching-Chuan: A Group
Mobility Model for Ad Hoc Wireless Networks. In: Proc. of the ACM Int. Workshop on
Modelling and Simulation of Wireless and Mobile Systems (MSWiM) (1999), S. 53–60

[Hoogendoorn / Bovy 2001]
Hoogendoorn, S. P. und Bovy, P. H. L.: State-of-the-art of vehicular traffic flow
modelling. In: Journal of Systems and Control Engineering - Special Issue on Road
Traffic Modelling and Control 215 (2001), Nr. 4, S. 283–304

[Johansson et al. 1999]
Johansson, Per, Larsson, Tony, Hedman, Nicklas, Mielczarek, Bartosz und
Degermark, Mikael: Scenario-based Performance Analysis of Routing Protocols for
Mobile Ad-hoc Networks. In: Proc. of the Mobicom (1999), S. 195–206

[Page 17]

http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf
http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf

Documentation -18- Bonnmotion

[Keränen et al. 2009]
Keränen, Ari, Ott, Jörg und Kärkkäinen, Teemu: The ONE Simulator for DTN
Protocol Evaluation. In: Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, SIMUTools 2009, Rome, Italy, March 2-6, 2009, ICST, 2009, S.
1–10

[Liang / Haas 1999]
Liang, Ben und Haas, Zygmunt J.: Predictive distance-based mobility management
for PCS networks. In: Proc. of the IEEE Infocom (1999), S. 1377–1384

[Musolesi / Mascolo 2008]
Musolesi, Mirco und Mascolo, Cecilia: Mobility Models for Systems Evaluation.
In: State of the Art on Middleware for Network Eccentric and Mobile Applications
(MINEMA) (2008)

[WISEBED Project 2009]
WISEBED Project: Deliverable D4.1: First Set of Well-Designed Simulations,
Experiments and Possible Benchmarks. http://www.wisebed.eu/images/stories/

deliverables/d4.1.pdf. Version: 2009

[Page 18]

http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf
http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf

	Legal notice
	Contact information
	Introduction
	Installation
	Installation on UNIX operating systems
	Installation on Microsoft Windows operating systems

	Running
	Scenario generation
	The Random Waypoint model ("RandomWaypoint")
	The Manhattan Grid model ("ManhattanGrid")
	Gauss-Markov models
	The original Gauss-Markov model ("OriginalGaussMarkov")
	The Gauss-Markov model ("GaussMarkov")

	The Reference Point Group Mobility model ("RPGM")
	Static scenarios ("Static")
	Disaster Area model ("DisasterArea")
	Random Street ("RandomStreet")
	Random Direction Model ("RandomDirection")
	Random Walk Model ("RandomWalk")
	Probabilistic Random Walk Model ("ProbRandomWalk")
	Column Mobility Model ("Column")
	Nomadic Community Mobility Model ("Nomadic")
	Pursue Mobility Model ("Pursue")
	Chain Model ("ChainScenario")

	Converting scenarios to other formats
	ns-2
	Glomosim / Qualnet
	The ONE
	XML
	IntervalFormat
	WiseML

	Scenario analysis
	The Statistics application
	The LinkDump application
	The Dwelltime application

	Scenario visualisation
	Acknowledgments
	References

