
BonnMotion

A Mobility Scenario Generation and Analysis Tool

Documentation

Version: July 8, 2013

Copyright c©2013 University of Osnabrück

Documentation -2- Bonnmotion

Contents

1 Legal notice 4

2 Contact information 4

3 Introduction 4

4 Installation 4

4.1 Installation on UNIX operating systems . 5

4.2 Installation on Microsoft Windows operating systems 5

5 Running 5

6 Scenario generation 5

6.1 The Random Waypoint model (“RandomWaypoint”) 6

6.2 The Manhattan Grid model (“ManhattanGrid”) 7

6.3 Gauss-Markov models . 7

6.3.1 The original Gauss-Markov model (“OriginalGaussMarkov”) 7

6.3.2 The Gauss-Markov model (“GaussMarkov”) 7

6.4 The Reference Point Group Mobility model (“RPGM”) 8

6.5 Static scenarios (“Static”) . 8

6.6 Static scenarios with drift (“StaticDrift”) . 8

6.7 Disaster Area model (“DisasterArea”) . 9

6.8 Random Street (“RandomStreet”) . 9

6.9 Tactical Indoor Mobility Model (“TIMM”) 9

6.10 Self-similar Least Action Walk (“SLAW”) . 10

6.11 Map-based Self-similar Least Action Walk (“MSLAW”) 11

6.12 SMOOTH Model (“SMOOTH”) . 11

6.13 Steady-State Random Waypoint Model (“SteadyStateRandomWaypoint”) . . 12

6.14 Random Direction Model (“RandomDirection”) 12

6.15 Random Walk Model (“RandomWalk”) . 12

6.16 Probabilistic Random Walk Model (“ProbRandomWalk”) 13

6.17 Boundless Simulation Area Model (“Boundless”) 13

6.18 Column Mobility Model (“Column”) . 13

6.19 Nomadic Community Mobility Model (“Nomadic”) 13

6.20 Pursue Mobility Model (“Pursue”) . 14

6.21 Chain Model (“ChainScenario”) . 14

7 Converting scenarios to other formats 15

7.1 ns-2 . 15

7.2 ns-3 . 16

7.3 Glomosim / Qualnet . 16

7.4 The ONE . 16

7.5 XML . 17

7.6 IntervalFormat . 17

7.7 WiseML . 17

7.8 ScenarioConverter . 18

[Page 2]

Bonnmotion -3- Documentation

7.9 CSVFile . 19

8 Importing other formats 19
8.1 GPXImport . 19

9 Scenario analysis 20
9.1 The Statistics application . 20
9.2 The LinkDump application . 22
9.3 The Dwelltime application . 22

10 Scenario visualisation 23

11 Validation 23
11.1 Setup . 23
11.2 Usage . 23
11.3 Determination . 24
11.4 Validation . 25
11.5 Determination of a BonnMotion app . 25
11.6 Validation of a BonnMotion app . 26

12 Acknowledgments 26

References 27

[Page 3]

Documentation -4- Bonnmotion

1 Legal notice

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

2 Contact information

eMail:

info@bonnmotion.net

URL:

http://bonnmotion.net/

Postal address:

Nils Aschenbruck
Institute of Computer Science, University of Osnabrück
Albrechtstraße 28, 49076 Osnabrück, Germany

3 Introduction

BonnMotion is a Java software which creates and analyzes mobility scenarios and is most
commonly used as a tool for the investigation of mobile ad hoc network characteristics.
The scenarios can also be exported for several network simulators, such as ns-2, ns-3, Glo-
MoSim/QualNet, COOJA, MiXiM, and ONE. BonnMotion is being jointly developed by the
Communication Systems group at the University of Bonn, Germany, the Toilers group at
the Colorado School of Mines, Golden, CO, USA, and the Distributed Systems group at the
University of Osnabrück, Germany.

4 Installation

To use this software, you need to have a JDK or JRE installed. It has been compiled and
tested with Java v1.5.0 18.

During the installation, a few other shell scripts / batch files are created in the “bin”
folder, which you can move and rename as you like:

• “bm” is a wrapper that starts the BonnMotion application. Starting it without com-
mand line parameters prints a detailed help message.

• “compile” compiles the sources. By default, only applies to files that were changed after
the last compilation. To re-compile all sources, use “compile all”.

[Page 4]

http://bonnmotion.net/

Bonnmotion -5- Documentation

• “makedoc” uses javadoc to create a source code documentation.

Since this distribution does not include pre-compiled class files, the “compile” script needs
to be executed before the first usage of BonnMotion.

4.1 Installation on UNIX operating systems

If you are using a UNIX platform, simply unpack the archive and run the “install” script.
You will then be asked for the location of your Java binary path, i.e. the directory containing
the Java interpreter and possibly the Java compiler and the javadoc utility.

NOTE: We have not yet run our shell scripts on other platforms than Linux or Cygwin.
We would be happy if you informed us about changes necessary to run them under other
operating systems so we can incorporate them into our distribution.

4.2 Installation on Microsoft Windows operating systems

NOTE: The batch files for MS Windows have not yet been thoroughly tested.

If you are using Microsoft Windows, please edit the two variables JAVAPATH and BON-
NMOTION in the “install.bat” and then execute it.

5 Running

All applications described below are started via the “bm” wrapper script. The syntax is as
follows:

bm 〈parameters〉 〈application〉 〈application parameters〉

The application can be a mobility model or e.g. the Statistics application used to analyze
scenario characteristics.

Starting the script without command line parameters prints further help. Usage examples
are given in the sections below.

6 Scenario generation

Currently, there are several mobility models available, which are introduced later on with
some comments on implementation details. For further details on the models themselves,
please refer to the literature. Various synthetic models were proposed during last decade.
There have been several general surveys [9, 6, 4, 20] as well as some specific ones for vehicular
models [13].

There are two possibilities to feed input parameters into the scenario generation: The first
is to enter the parameters on the command line, and the second is to have a file containing
the parameters. These two methods can also be combined; in this case, the command line
parameters override those given in the input file.

The scenario generator writes all parameters used to create a certain scenario to a file.
In this way, settings are saved and particular scenario parameters can be varied without the
need to re-enter all other parameters.

[Page 5]

Documentation -6- Bonnmotion

Important parameters used with all models are the following: The node number is set
with -n, the scenario duration (in seconds) with -d and the -i parameter specifies, how many
additional seconds at the beginning of the scenario should be skipped. With -x and -y, the
width and height (in metres) of the simulation area are set. With -R, the random seed can
be set manually.

Cutting off the initial phase is an important feature and therefore, -i has a high default
value: It has been observed that with the Random Waypoint model, nodes have a higher
probability of being near the center of the simulation area, while they are initially uniformly
distributed over the simulation area. In our implementation of the Manhattan Grid model,
all nodes start at (0,0) for simplicity.

Usage examples:

bm -f scenario1 RandomWaypoint -n 100 -d 900 -i 3600

This creates a Random Waypoint scenario with 100 nodes and a duration of 900 seconds.
An initial phase of 3600 seconds is cut off.

A scenario is saved in two files: The first, with the suffix “.params”, contains the complete
set of parameters used for the simulation. The second, with the suffix “.movements.gz”
contains the (gzipped) movement data.

Now, you can take a look at the “scenario1.params” file to see all parameters used for the
simulation, and if you wanted to create a similar scenario, only with a higher mobility, you
can do this with

bm -f scenario2 -I scenario1.params RandomWaypoint -h 5.0

which takes the whole parameter set from scenario1.params and overrides the maximum
speed with 5 m/s.

6.1 The Random Waypoint model (“RandomWaypoint”)

Our implementation includes a feature to restrict the mobiles’ movements: With “-d 1”,
nodes move only along the x-axis, with “-d 2”, nodes move either along the x- or along the
y-axis (with a probability of 0.5 each) and with the default “-d 3”, it is the classical Random
Waypoint model as you know it.

Another feature is the “-c” switch that causes positions to be chosen from a circle that
fits into the simulation area rather than from the simulation area itself.

Instead of choosing new destinations uniformly distributed from the simulation area, “at-
traction points” can be defined with the “-a” parameter, followed by the data characterizing
the attraction points. Each attraction point is defined by five floating point numbers, in this
order: < coordx >,< coordy >,< intensity >,< stddevx >,< stddevy >.

• The coordinates < coordx >,< coordy > give the attraction point’s position.

• The intensity levels weight the attraction points: A point with an intensity x times as
high as another point’s will also attract a node with a probability which is x times as
high.

[Page 6]

Bonnmotion -7- Documentation

• The last two parameters are the standard deviations of the Gaussian distribution with
mean 0 that is used to determine the nodes’ distances to the attraction point on dimen-
sion x and y, respectively.

The parameters for several attraction points are simply concatenated, seperated by com-
mas. For example, to place two attraction points on the simulation area, the first at (100,100)
with intensity 1 and both standard deviations 20, the second at (350,200) with intensity 1.5
and standard deviations 31 and 35, use “-a 100,100,1,20,20,350,200,1.5,31,35”.

6.2 The Manhattan Grid model (“ManhattanGrid”)

The Manhattan Grid model is introduced in [10]. In this model, nodes move only on predefined
paths. The arguments -u and -v set the number of blocks between the paths. As an example,
“-u 3 -v 2” places the following paths on the simulation area:

+ - + - + - +
| | | |
+ - + - + - +
| | | |
+ - + - + - +

Our implementation contains some (reasonable) modifications of the Manhattan Grid
model:

1) An additional parameter we introduce is the minimum speed of a mobile node. This is
helpful because the speed of a mobile can be arbitrarily close to 0 and since the model defines
that the speed is to be updated in distance intervals, there can be very long periods of very
slow node movement without this parameter.

2) The possibility to have nodes pause was added with help of two additional parameters:
The pause probability (if a node does not change its speed, it will pause with that probability)
and the maximum pause time.

Note that it is especially important to cut off an initial phase with this model, because in
our implementation, all nodes start at the same position (0,0).

6.3 Gauss-Markov models

6.3.1 The original Gauss-Markov model (“OriginalGaussMarkov”)

This implementation of the Gauss-Markov model follows the publication [17]. In this imple-
mentation, the mean velocity vector mu is not specified directly; instead, the norm is specified
using “-a” and a random vector with this norm is assigned to each station. Of course, a norm
of 0 yields only the vector (0,0). The implementation also allows the user to specify a max-
imum speed. A velocity vectors with a larger norm will be multiplied with an appropriate
scalar to reduce the speed to the maximum speed.

The model has been adapted to deal with scenario borders in the following way: If a
station moves onto the border, its velocity vector as well as its expected velocity vector are
“mirrored”.

6.3.2 The Gauss-Markov model (“GaussMarkov”)

This is the implementation of the Gauss-Markov model, which rather follows the description
in [9], though it is not the same. The main commonalites are that for each mobile node,

[Page 7]

Documentation -8- Bonnmotion

two seperate values are maintained instead of one speed vector: The mobile’s speed and
its direction of movement. Also the default method of handling mobile nodes that move
out of the simulation area is closely related to [9]: Nodes may continue to walk beyond the
area boundary, which causes the next movement vector update not to be based on the prior
angle, but on an angle that brings the nodes back onto the field. Therefore, the field size is
automatically adapted to the node movements after scenario generation.

The main difference to [9] is that new speed and direction of movement are simply chosen
from a normal distribution with a mean of the respective old value (the standard deviation
is specified on the command line using -a and -s). Speed values are constrained to a certain
interval that can be specified on the command line using -m and -h: If a newly chosen speed
value is outside of this interval, it is changed to the closest value inside of the interval (which
is either the minimum or the maximum value).

The behaviour described above can be modified with several command line switches: Using
-b, the size of the simulation area is fixed and nodes simply “bounce” at the area boundaries.
Using -u, the speed values outside of the valid speed interval are adapted in a way that leads
to a uniform distribution of node speeds (instead of peaks around the interval boundaries).

6.4 The Reference Point Group Mobility model (“RPGM”)

The implementation of this model [12] includes the possibility to have “dynamic” groups:
When a node comes into the area of another group, it changes to this new group with a
probability that can be set with “-c <probability>”. Deactivate this feature with “-c 0”.
Note that when this feature is activated, “empty” groups may be moving along the simulation
area and nodes coming into their areas may change their memberships to these.

6.5 Static scenarios (“Static”)

By default, nodes in static scenarios are homogeneously distributed over the simulation area.
There are two possibilities for non-homogeneous node distributions:

• Attraction points can be defined with the “-a” parameter; a detailed explanation of this
feature is given in the “Random Waypoint” section.

• With the “-l” parameter, the simulation area can be divided into several areas with
different node densities along its x-axis. Given the number n of density leves, each of
the n areas will contain a fraction of approximately 2 ∗ k/(n ∗ (n + 1)), 1 <= k <= n,
of the nodes. (The density decreases from left to right.)

The following example shall illustrate this: Distributing 150 nodes on a 300m x 300m field
with 3 density levels, approx. 75 nodes will lie within the rectangle area with the corners
(0,0) and (100,300), approx. 50 nodes will lie within (100,0) and (200,300) and approx. 25
nodes will lie within (200,0) and (300,300).

6.6 Static scenarios with drift (“StaticDrift”)

In this model the user has to provide an input file with the initial positions of all nodes. The
positions are drifted along ajustable intervals and saved as Bonnmotion scenario. The format
of the input file has to be:

[Page 8]

Bonnmotion -9- Documentation

x1 y1

x2 y2

...

Each row of the file belongs to the position of one node.
∆x and ∆y are defined with the “-X” and “-Y” parameters . If ∆x and ∆y should be

equal the value can be set with the parameter “-B”. The final position of one node n is
[xn −∆x, xn + ∆x], [yn −∆y, yn + ∆y]. There is no movement in this model.

6.7 Disaster Area model (“DisasterArea”)

Creates scenarios according to [2].

• Tactical areas can be defined with the “-b” parameter following a list of coordinates for
the area (seperated by “,”). The last three values in this list are type, wanted groups
and transportgroups.

• Type can be 0 for incident location, 1 for patients waiting for treatment area, 2 for
casualties clearing station, 3 for technical operational command and 4 for ambulance
parking point.

• For every specified incident location there must be a patients waiting for treatment area
specified, for every patients waiting for treatment area a casualties clearing station and
for every ambulance parking point a casualties clearing station.

6.8 Random Street (“RandomStreet”)

Creates scenarios according to [3]. The path to the parameter file containing the model
parameter values (cf. Table 2 in [3]) can be specified with “-p”. An example parameter file
is located in the doc/RaSt example folder. In addition to the model parameters mentioned
in the paper, there are two more parameters in the example file:

MeshNodeDistance This optional parameter adds a grid of static nodes to the scenario which
represent mesh nodes. More precisely, it specifies the distance between two neigboring
nodes (in meters). Setting this to −1 disables adding these static nodes to the scenario
which is also the default.

MaxORSRequestIterations Route requests to OpenRouteService may result in an error for
certain pairs of source and destination, especially for positions that are chosen randomly
as done within Random Street. Therefore, this parameter limits the maximum number
of retries for a route request, where a new random position is generated for each retry.
The default for this parameter is 30.

6.9 Tactical Indoor Mobility Model (“TIMM”)

Creates scenarios according to [1]. Tactical Indoor Mobility Model (TIMM) models the node
movement according to a small ruleset (cf. Figure 1) with an underling graph representing
the building.

[Page 9]

Documentation -10- Bonnmotion

Building graph The building graph file contains the graph representation of the underling
building/scenario. Lines starting with “#” are ignored, starting with “Pos=” are inter-
preted as vertexes. The syntax is:

Pos=<NodeName>,x,y,NeighborNode1;NeighborNode2;...;NeighborNodeN,<Type>

Valid types are “ROOM”,“DOOR”,“STRUCT”, and “DISTANCE”. The model does
not distinguish between “ROOM”,“STRUCT”, and “DISTANCE”. However, the inten-
tion is to use “ROOM” for vertexes representing rooms and “STRUCT” for vertexes,
which are required to model the building structure. “DISTANCE” vertexes should not
be inserted into the building graph file. These are created by the model if necessary,
due to the configured maximal distance between vertexes in the graph. Exactly one
vertex must be labeled as “StartVertex”. An example building graph file is located in
the doc/TIMM example folder.

Door opening time This parameter is used to determine how long it takes to secure a room.
This includes opening the door, looking in the room, and taking necessary steps.

Keep in mind, that movements in tactical and non-tactical scenarios are completely dif-
ferent! An example parameter file is located in the doc/TIMM example folder.

Rule:
Time Limit

Rule:
Distance Limit

Target Choice

Move Group

Group
Segmentation

No Targets LeftMultiple Targets

Distance Limit Reached

Time Limit Reached

Figure 1: Schematic view of the TIMM ruleset

6.10 Self-similar Least Action Walk (“SLAW”)

Creates scenarios according to [16]. The implementation is loosely based on the Matlab code
provided by the authors [23].

[Page 10]

Bonnmotion -11- Documentation

6.11 Map-based Self-similar Least Action Walk (“MSLAW”)

Creates scenarios according to [25]. The path to the parameter file containing the model
parameter values (cf. Table 1 in [25]) can be specified with “-p”. An example parameter file
is located in the doc/MSLAW example folder. In addition to the model parameters mentioned in
the paper, there is one additional parameter in the example file (MaxORSRequestIterations,
cf. Section 6.8).

6.12 SMOOTH Model (“SMOOTH”)

Creates scenarios described in [19]. SMOOTH presents a mobility model that is both realistic
and simple by creating traces that match human movements in a manner that is simple to use.
The movements that are generated by SMOOTH follow power-law distribution, and the move-
ments of the mobile nodes are generated by a predetermined probability. As SMOOTH takes
into account the fact that node movements can be predicted to some extent, the movements
generated are also influenced by their previous movements.

SMOOTH initially places each node near a cluster, with more nodes being placed near
clusters with a higher popularity. These clusters are distributed evenly about the simulation
area, and far enough apart so that no cluster is in the transmission range of another. When
a node changes location, the node transitions to either a new location, or a previously-visited
location, based on predetermined probabilities. These movements, as well as the time that
a node pauses at a location, are power-law distributed. The implementation is based on C
code provided by [26].

• -g <range>

• -h <clusters>

• -k <alpha>

• -l <f min>

• -m <f max>

• -o <beta>

• -p <p min>

• -q <p max>

• -s <print> Optional parameter. Must be one of: CN, CT, ICT or ALL. Specifies what
variable is to be printed to the command line. All options will be printed to output file
in all cases, or if the option is not specified.

• -t Optional parameter. Specifies the maximum number of locations for the scenario.
The default is 20000.

[Page 11]

Documentation -12- Bonnmotion

6.13 Steady-State Random Waypoint Model (“SteadyStateRandomWay-
point”)

The Steady-State Random Waypoint Mobility Model [21, 22] uses the random waypoint
model, where a node picks a random point on the simulation area and a random speed
and then travels to that point at the chosen speed. Once it arrives, the node pauses for a
randomly chosen pause time, and then repeats the process until the simulation ends. The
Steady-State Random Waypoint Mobility Model picks initial node positions, speeds, and
pause times according to the steady-state distributions of the random waypoint model, so
that no time is required to let the distributions of position and speed settle at the beginning
of the simulation.

• -o <speed mean> Must be > 0

• -p <speed delta> Must be ≥ 0

• -k <pause mean> Must be ≥ 0

• -l <pause delta> Must be ≥ 0

NOTES: The minimum speed must be positive, because the steady-state distribution is
degenerate when the minimum speed is 0. An end time of zero only gives the initial configu-
ration of the nodes without any movement.

This implementation is based on mobgen written by Jeff Boleng <jeff@boleng.com>
(Ph.D. 2002 from the Colorado School of Mines) and mobgen-ss by Nick Bauer (M.S. 2004
from the Colorado School of Mines).

6.14 Random Direction Model (“RandomDirection”)

Creates scenarios described in [9]. A model that forces MNs to travel to the edge of the
simulation area before changing direction and speed. This model does not suffer from the
density waves in the center of the simulation space that Random Waypoint model does. In
this model, MNs choose a random direction in which to travel similar to the Random Walk
Mobility Model. An MN then travels to the border of the simulation area in that direction.
Once the simulation boundary is reached, the MN pauses for a specified time, chooses another
angular direction (between 0 and 180 degrees) and continues the process.

6.15 Random Walk Model (“RandomWalk”)

Creates scenarios described in [9]. A simple mobility model based on random directions and
speeds. In this mobility model, an MN moves from its current location to a new location by
randomly choosing a direction and speed in which to travel. The new speed and direction
are both chosen from predefined ranges, [speedmin, speedmax] and [0, 2π] respectively. If an
MN which moves according to this model reaches a simulation boundary, it “bounces” off
the simulation border with an angle determined by the incoming direction. The MN then
continues along this new path. This model can be configured such that the nodes continue
along their path for a set amount of time or a set distance. This can be set by the −t flag
for time limited mode, or by the −s for distance limited mode. The desired time or length
should follow the flag after a space e.g., −t 10.

[Page 12]

Bonnmotion -13- Documentation

6.16 Probabilistic Random Walk Model (“ProbRandomWalk”)

Creates scenarios described in [9]. A model that utilizes a set of probabilities to determine the
next position of an MN. The model utilizes a probability matrix that defines the probabilities
of a node moving forwards, backwards, or remaining still in both the x and y direction. Once
the direction of travel has been determined, the node will travel with a fixed speed (as per
the Toilers’ code) for a specified allotment of time. This amount of time is set with the −t
flag. The desired time should follow the flag after a space, e.g., −t 15, for 15 seconds.

6.17 Boundless Simulation Area Model (“Boundless”)

Creates scenarios according to [9]. A model that converts a 2D rectangular simulation area
into a torus-shaped simulation area - where no boundaries exist. In addition, this model’s
nodes have some special relationships between previous direction of travel and velocity with
its current direction of travel and velocity. In this model, both the velocity vector and position
are updated every ∆t time steps according to the following formulas:

v(t+ ∆t) = min[max(v(t) + ∆v, 0), Vmax];

θ(t+ ∆t) = θ(t) + ∆θ;

x(t+ ∆t) = x(t) + v(t) ∗ cosθ(t);

y(t+ ∆t) = y(t) + v(t) ∗ sinθ(t);

where Vmax is the maximum velocity defined in the simulation, ∆v is the change in velocity
which is uniformly distributed between [−Amax ∗ ∆t, Amax ∗ ∆t], Amax is the maximum
acceleration of a given MN, ∆θ is the change in direction which is uniformly distributed
between [−α ∗∆t, α ∗∆t], and α is the maximum angular change in the direction an MN is
traveling.

6.18 Column Mobility Model (“Column”)

Creates scenarios according to [9]. A group mobility model where the set of MNs form a line
and are uniformly moving forward in a particular direction. In this model the user will specify
the number of node and number of groups. The number of nodes must be evenly divisible
by the number of groups, i.e., all node group must be completely filled - no lone nodes. The
column of reference points picks a random orientation angle and random movement vector.
The nodes follow their individual reference point across the map. They have a parameter,
maxDist, that determines how far away their random movements around their reference point
may be - exactly like the Nomadic model.

6.19 Nomadic Community Mobility Model (“Nomadic”)

Creates scenarios according to [9]. A group mobility model where a set of MNs move together
from one location to another. An example scenario this model simulates would be a guided
tour of a city or museum. The tour guide and tourists move from spot to spot and they would
all roam around each particular location individually.

Each group of mobile nodes has an invisible reference node that they follow around the
simulation. Once the reference point changes, all of the mobile nodes travel to the new

[Page 13]

Documentation -14- Bonnmotion

location and begin roaming. Their roaming is defined by picking random locations within
some predefined roaming radius of the reference point. This maximum roaming distance is
defined by the −r flag.

6.20 Pursue Mobility Model (“Pursue”)

Creates scenarios according to [9]. This model attempts to represent nodes tracking a single
targeted node. This model could represent police forces chasing down a criminal on the run.
The model uses Random Waypoint with no pauses to move the pursued target. The model
uses one equation to update the position of each pursuing node:

new position = old position+ acceleration(target− old position) + random vector

Where acceleration(target − old position) is information on the movement of the node
being pursued and random vector is a random offset for each node. The random vector is
a vector in a random direction with a configurable magnitude by using the −m flag. You
will want to keep this magnitude low (0 - 10) to ensure the pursuing nodes maintain effective
tracking of the target.

6.21 Chain Model (“ChainScenario”)

The Chain model is not a model itself but a concatenation of implemented models described
in this document. In some cases it is necessary to model scenarios in which mobile nodes
behave in different ways depending on time and position. With the Chain model, the mobile
nodes’ final position of the N-1-th scenario is linked to the initial position of the N-th scenario.

The Chain model works in the following way: it permits to specify a few known models
(e.g., Random Waypoint, Manhattan, RPGM, etc.), each one with its own set of parameters
as they are defined in this documentation. Therefore, it is possible to define the behaviour of
each model separately. Each model that is part of the Chain must be enclosed by quotation
marks (“”) in order to be distinguished from the rest.

In addition to the individual models, Chain model accepts two parameters: “-m <mode>”
specifies if the initial positions of the N-th scenario have a delay of 2 seconds (mode = 1) or
not (mode = 0, default). The optional parameter “-P” enables the generation of a set of files
for each individual scenario, in addition to the whole chain scenario.

There are two parameters which must be coordinated along all individual models. The
number of mobile nodes must be the same for all scenarios, otherwise chain scenario generation
will fail. The simulation area may differ between scenarios, but if the final positions of the
N-1-th scenario are out of the scope of the N-th scenario’s simulation area, generation will
also fail.

The following example generates a chain scenario named chainTest and concatenates a
RandomWaypoint and a ManhattanGrid scenario. The complete chain scenario will have a
duration of 400 seconds (200 sec. for each model), and 10 mobile nodes (remember that this
number must be the same for all models). Since the “-m” parameter is defined as 1, a delay
of 2 seconds between the two scenarios will be introduced:

bm -f chainTest ChainScenario -m 1 -P “RandomWaypoint -d 200 -n 10 -x 500 -y 500 -o
3” “ManhattanGrid -d 200 -n 10 -x 500 -y 500”

[Page 14]

Bonnmotion -15- Documentation

An example of when chain model could help to model a scenario from reality, consider a
city with a campus (could be a factory, university, etc.). It could be interesting to model
mobility inside the campus, and after some time, to see what happens when students move
from campus to their homes.

+---------+---------+---------+---------+

| | | | |

| | | | |

| | | | |

+---------+---------+---------+---------+

| | | | |

| | | | |

| | | | |

+---------+---------+---------+---------+

| | | | |

| CAMPUS | | | |

| | | | |

+---------+---------+---------+---------+

The following line generates a chain scenario for this:

bm -f campus ChainScenario -m 1 “RandomWaypoint -d 200 -n 10 -x 100 -y 100 -o 3”
“ManhattanGrid -d 200 -n 10 -x 400 -y 300 -u 4 -v 3”

7 Converting scenarios to other formats

The native format in which BonnMotion saves the movement traces is node-by-line waypoint
based. This means that there is one line for each node. This line contains all the waypoints.
A waypoint is a position at which the movement of a node (e.g. direction, velocity) changes.
A waypoint consists of:

• the simulation time in seconds at which the waypoint is reached by the node

• the x and y coordinates of the position of the waypoint.

MiXiM (http://mixim.sourceforge.net/) is a simulation framework for wireless and mo-
bile networks, which can handle the BonnMotion trace format without converting.

The Simulation platform COOJA (http://www.contiki-os.org/) can be used with Bon-
nMotion traces, using the WiseML format (see: section 7.7).

7.1 ns-2

The “NSFile” application is used to generate two files that can be integrated into a TCL
script to start an ns-2 simulation via the “source” command.

The file with the suffix “.ns params” sets some variables needed to set up the simulation
in an array named “val”: the keys “x” and “y” refer to width and height of the simulation
area, “nn” refers to the number of nodes and “duration” to the duration of the simulation.

[Page 15]

http://mixim.sourceforge.net/
http://www.contiki-os.org/

Documentation -16- Bonnmotion

The file with the suffix “.ns movements” schedules the movements of the node objects
that are expected to be in an array named “node ”, numbered starting at 0. The simulator
object is expected to be in the variable “ns ”.

As a side note, the “NSFile” application places an additional margin around the simula-
tion area, because ns-2 versions up to 2.34 regularly crash when nodes move at the border of
the simulation area. (Actually, this has only been observed with the Manhattan Grid model
up to now, but this procedure is generally carried out just to play it safe.)

Usage example:

bm NSFile -f scenario1

creates the two files “scenario1.ns params” and “scenario1.ns movements”.

The NSFile command line switches:

• [-b <double >]: Adds an additional margin around the simulation area, because ns-
2 versions up to 2.34 crash when nodes move at the border of the simulation area -
Default: 10

• [-d]: Disables the usage of module specific converters (e.g. for DisasterArea) and uses
the standard converter instead.

• -f <scenario>: BonnMotion scenario to convert.

7.2 ns-3

The “NSFile” (cf. Section 7.1) application can be used to generate movements for ns-3 as
it supports ns-2-movementfiles. As ns-3 does not crash if nodes move at the border, the
additional margin can be disabled with the parameter “-b“.

An example script for ns-3 is given in doc/ns3.

7.3 Glomosim / Qualnet

The “GlomoFile” application creates files with the suffixes “.glomo nodes” and “.glomo mobility”,
which can be used with Glomosim (2.0.3) and Qualnet (3.5.1). Use the “-q” switch for Qual-
net: This causes nodes to be numbered starting at 1, not at 0.

7.4 The ONE

The “TheONEFile” application creates a file with the suffix “.one”, which can be used with
the ONE simulator [15]. Use the “-l” parameter to set the sampling interval between two
positions of the same node (the default is 1s).

Usage example:

bm TheONEFile -f scenario1 -l 5

creates the file “scenario1.one” with a sampling interval of 5s.

[Page 16]

Bonnmotion -17- Documentation

7.5 XML

The “SPPXml” application is used to generate mobility files in XML format according to
the XML schema proposed by Horst Hellbrück as a standardised mobility file format for
the research program “Schwerpunktprogramm 1140” (http://www.tm.uka.de/forschung/
SPP1140/) of the DFG (Deutsche Forschungsgemeinschaft).

SPPXml has an additional parameter “-r” that allows to specify a uniform radio range
for all nodes. If this parameter is omitted, a radio range of 250m is used. BonnMotion does
not use this radio range in any way. It is however required by the XML schema.

The XML schema corresponding to the XML files generated by “SPPXml” is defined in:
http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd

The contrib directory furthermore includes a python program “sppmob2bonnmotion.py”
that convertw XML mobility traces to the BonnMotion format. It has been tested with
Python 2.3.

7.6 IntervalFormat

The native format implies that during the simulations for each event the current node positions
have to be calculated based on the waypoints. If there are many events, this may have a
negative impact on the runtime of a simulation. An alternative is to use an interval based
approach. The nodes are regarded as stationary for an interval. The positions of the nodes
are updated periodically after each interval by a specific position update event. By doing so,
the current node positions do not have to be calculated for each event. However, the number
events is increased, which may also influence the runtime of a simulation negatively. A factor
that has a major impact in this context is the interval length. Smaller intervals yield higher
accuracy but also more events. Overall, it is a trade-off between the number of events and
the runtime per event.

Trace files in the BonnMotion’s native trace format can be transformed to an interval-
based format using the IntervalFormat application. The interval length can be specified using
the -l option. The default value is one second. The interval trace format is an interval-by-line
based. This means that there is one line for each interval of each node. A line consists of:

• the node number

• the simulation time in seconds (in intervals)

• the x and y coordinates of the position of the node for the interval

The IntervalFormat application prints the waypoints (ordered by node and time) for every
interval step.

• The used interval can be specified using the -l switch.

• Using the -s switch the header can be skipped

7.7 WiseML

WiseML [27] is a description format allowing a standardized storage of traces of experiments.
It is based on GraphML and used within the WISEBED Project (http://www.wisebed.eu/).
Each experiment trace is stored within one file and contains all needed information to identify

[Page 17]

http://www.tm.uka.de/forschung/SPP1140/
http://www.tm.uka.de/forschung/SPP1140/
http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd
http://www.wisebed.eu/

Documentation -18- Bonnmotion

and reproduce a simulation trace. This BonnMotion application allows the conversion of
BonnMotion’s native format into WiseML.

The WiseML app has two basic modes of operation. One mode is interval-based, where
the positions of all nodes of the scenario are printed at each interval (needs to be provided
with the -L switch). In contrast, in the contact-based mode the position of all nodes are
printed only whenever any node enters or leaves the communication radius of another node.
The contact-based mode is activated by providing a transmission range with the -r switch. By
setting the -o switch only positions of nodes, which links change, are printed. If the -e switch
is used it is also printed which links were disabled or enabled. This information is given
by <enableLink source=nodeid target=nodeid \> and <disableLink source=nodeid

target=nodeid \> tags. Note that you can also combine the two modes by using both the
-L and -r switch.

The WiseML converter offers various command line switches to tune the output to the
desired format. You get a full list with bm -ha WiseML.

• -a <altitude>: Default z value (BonnMotion 1.5 does not support 3D traces).

• -c <compressionlevel>: Compression of the output (0 = NONE, 1 = No tabs, 2 = No
tabs, no newlines).

• -f <scenario>: BonnMotion scenario to convert.

• -F <filename>: Path to XML footer to include in output.

• -H <filename>: Path to XML header to include in output.

• -I: Output integer values for the timestamps instead of doubles.

• -L <double>: Interval length between two timestamps (interval-based mode).

• -r <double>: Transmission range (contact-based mode).

• -e: Print which links were enabled/disabled (contact-based mode).

• -o: Print only positions of nodes, which links are changing (contact-based mode)

• -N <filename>: Path to nodeId names. Each row should contain one name.

7.8 ScenarioConverter

BonnMotion supports 3D scenarios since version 2.0. Because a third position coordinate is
needed, the movement formats of 2D and 3D traces are different:

2D: <time 1> <x 1> <y 1> <time 2> <x 2> <y 2> <time 3> ...

3D: <time 1> <x 1> <y 1> <z 1> <time 2> <x 2> <y 2> <z 2> <time 3> ...

To make it possible to use the desired statistics options, the ScenarioConverter app can
be used to convert 3D to 2D scenarios and vice-versa. If a 3D scenario is converted to a 2D
scenario, each z value is simply trimmed. Else if a 2D scenario is converted to a 3D scenario,
each waypoint is set the same z value (default: 0).

Parameters:

• -f <name>: the source scenario name

[Page 18]

Bonnmotion -19- Documentation

• -g <name>: the target scenario name

• -m <mode: a or b>: ‘a’ converts a 3D scenario to a 2D scenario. ‘b’ converts a 2D
scenario to a 3D scenario.

• -z <double>: sets the z value, which will be used if a 2D scenario is converted into a
3D scenario.

7.9 CSVFile

When processing a generated mobility scenario with third-party tools, a general CSV-formatted
file might be more useful than the native Bonnmotion format. The “CSVFile” app converts
a mobility scenario to a comma-separated value file (suffix “.csv”), where each line contains
the tuple (i, t, x, y), where i is the node ID, t the simulation time, and (x, y) the position of
the waypoint. If the scenario is 3D, there is also a 5th value (z-coordinate).

Parameters:

• -f <name>: scenario name

• [-d <delimiter>]: Specify delimiter (default: “ ”)

• [-h]: Print header (default: no header)

8 Importing other formats

8.1 GPXImport

GPXImport can be used to import multiple Global Positioning System (GPS) Exchange
Format (GPX) files [11] and convert them into one BonnMotion mobility scenario (native
format). In default mode, GPXImport only imports the longitude and latitude values of all
tracks in all input files. GPX waypoints (note that a GPX does not necessarily have the
same semantics as a BonnMotion waypoint) and routes have to be imported explicitly with
-w and -r, respectively. In general, GPX trackpoints, routepoints, and waypoints need to be
associated with a timestamp, otherwise they will be ignored.

Tracks or routes with src tags will be assigned to one node per src tag in the mobility
scenario. In particular, tracks and/or routes associated with the same src tag are assumed
to belong to a single node. Tracks or routes without src tags will be assigned to an extra
node, each. Furthermore, all GPX waypoints of one input file are assumed to belong to a
single extra node.

Although there are GPS receivers which support a position logging frequency of more than
1Hz, GPX does not support time resolution beyond seconds. Therefore, multiple positions
might have the same timestamp associated with them. In this case, the positions are equally
distributed within that one second, i.e., n positions with timestamp t are converted to the
same positions with times t, t+ 1

n , . . . , t+ n−1
n , respectively.

Since GPS uses World Geodetic System (WGS)84 as its Coordinate Reference System
(CRS), the longitude and latitude values first need to be projected to a Cartesian coordinate
system (cf. -p parameter). In order to make the projection as precise as possible, a best-
match projected CRS has to be selected for the GPX input file(s) (see [8, 24]). For example, if

[Page 19]

Documentation -20- Bonnmotion

you would like to use Universal Transverse Mercator (UTM) zone 32N (cf., e.g., [18]) as your
projected CRS, the parameter value should be “epsg:32632” (European Petroleum Survey
Group (EPSG) code 32632).

The command line parameters of GPXImport are as follows (also see bm -ha GPXImport):

• -f <GPX file>. . . : Input file name(s).

• -c: If set, the created movement file will be compressed.

• -h: If set, the z-coordinate (altitude/elevation) of the positions is also imported and a
3D scenario is created.

• -H: Set default z-coordinate for positions with an invalid/missing value (if not explicitly
set, this is 0).

• -w: If set, the GPX waypoints are imported.

• -r: If set, the GPX routes are imported.

• -p <projected CRS name>: Name of the projected CRS for coordinate transformation
(mandatory).

• -F <filename>: Output file name (mandatory in case of multiple input files).

Usage examples:

./bm GPXImport -f path/to/BoiseFront.gpx -p epsg:32611 -c -w -r

This imports all tracks, routes, and waypoints from the GPX file path/to/BoiseFront.gpx

and transforms the positions using EPSG code 32611 (UTM zone 11N). The output files are
BoiseFront.param and BoiseFront.movements.gz in folder path/to/.

./bm GPXImport -f BoiseFront.gpx clementine_loop.gpx -p epsg:32611 -F Test -w -r

This imports all tracks, routes, and waypoints from both GPX files and transforms the posi-
tions using UTM zone 11N. The output files are Test.param and Test.movements.

9 Scenario analysis

9.1 The Statistics application

The “Statistics” application is used to analyze a given scenario. There are two modes of
operation: The default is to calculate “overall” statistics (averaged over the simulation time)
and the other mode is to calculate “progressive” statistics (values of metrics for certain points
in time).

In its default mode, the application creates a file with the suffix “.stats” containing the
following information:

• Metrics independent of transmission range:

1. The relative mobility is calculated according to [14].

2. The average node speed is the speed averaged over all nodes.

[Page 20]

Bonnmotion -21- Documentation

3. The average degree of temporal dependence is a measure for the dependence of a
node’s velocity on its velocity at some previous time (IMPORTANT framework
metric [5]).

• Metrics dependent of transmission range (sorted by row, one column per transmission
range):

1. Average degree of spatial dependence: How much are the nodes’ movements influ-
enced by each other (IMPORTANT framework metric [5])?

2. Average node degree: To how many of the other nodes is one node connected
(directly, i.e., over 1 hop)?

3. Average number of partitions: 1 means the network is connected at all times, values
larger than 1 indicate that this is not the case.

4. Partitioning degree: How likely is it that two randomly chosen nodes are not within
the same connected component at a randomly chosen point in time?

5. Average time to link break : Average time it takes for a link to break off. Only
links that go up after the simulation start and go down before the simulation end
are taken into account.

6. Standard deviation of time to link break (see above).

7. Link breaks: The total number of links that go up after the simulation start and
go down before the simulation end.

8. Average link duration: Similar to time to link break, but in this case all links are
counted (IMPORTANT framework metric [5]).

9. Total number of links.

10. Average relative speed (described in [14]) between all nodes in the network.

11. Average path availability : The value of path availability averaged over all node
pairs. Path availability is the fraction of time during which a path is available
between two nodes i and j (IMPORTANT framework metric [5]).

12. Average number of link changes: The number of link changes averaged over all
node pairs. Number of link changes for a pair of nodes i and j is the number
of times the link between them transitions from “down” to “up” (IMPORTANT
framework metric [5]).

Alternatively to the statistics which are averaged over the whole simulation time, the
devolution of certain characteristics can be calculated (progressive mode). See the command
line help and the following examples.

Usage examples:

bm Statistics -f scenario1 -r 50,75,100

This writes the averaged statistics to “scenario1.stats” for transmission ranges of 50, 75,
and 100 meters.

[Page 21]

Documentation -22- Bonnmotion

bm Statistics -f scenario1 -r 75 -P

This creates a file scenario1.stats 75.part, which gives the number of partitions each time
it changes.

bm Statistics -f scenario1 -r 50,100 -N -M 10

This creates the files “scenario1.stats 50.nodedeg” and “scenario1.stats 100.nodedeg” which
show the devolution of the node degrees. Furthermore, the files “scenario1.stats 50.mincut”
and “scenario1.stats 100.mincut” show the minimal cut of the topology every 10 seconds. It
is reasonable to specify such a time span for computations that cost much CPU time.

9.2 The LinkDump application

The LinkDump application prints information about every single link within a certain time
span of a scenario. This information can e.g. be used for a simulator that does not directly
model mobility at all. To use the LinkDump application, setting the transmission range using
the -r parameter is necessary.

Using the -d switch, only the link durations are printed. This offers more insight into the
distribution of link durations than the averaged value calculated by the Statistics application.
In this case, the -w switch prevents that wrong durations are printed out due to links that go
up before simulation begin or go down after simulation end.

In addition to the link durations, the inter-contact times can be obtained using the -j
parameter.

Parameters:

• [-b <double>]: begin of time span

• [-d]: compute link durations (and save to file)

• [-e <double>]: end of time span

• -f <name>: scenario name

• [-i]: print inter contact times to console

• [-j]: compute inter contact times (and save to file)

• -r <double>: transmission range

• [-w]: print only links that go up and down after begin and before end of time span

9.3 The Dwelltime application

The “Dwelltime” application creates statistics on how long nodes stay in a certain area (small
square cells) of the simulation area. Based on the cumulative dwell time of the nodes in each
cell, a two-dimensional histogram is created (cf. [7]). Let c be a cell and dn(c) the dwell time
of node n ∈ N in c for the whole simulation time s, then the dwell time d(c) is defined as:

d(c) :=

∑
n∈N dn(c)

|N | · s

[Page 22]

Bonnmotion -23- Documentation

Two output files are created by this app: One file with suffix “.bettstetter statistics” con-
taining one line for each cell with values (x, y, d(c)). The second file has the suffix “.bettstet-
ter statistics2” and contains the same values, but only for cells with d(c) > 0.

Parameters:

• -f <name>: scenario name

• [-m]: cell length (default: 0.5m)

• [-t]: discrete time step (default: 0.5s)

10 Scenario visualisation

“Visplot” is a very simple application that writes those positions to a file where a mobile
changes its speed or direction. This file can simply be visualised using e.g. gnuplot.

11 Validation

After a code change it is hard to verify if the change affected the repeatability of past scenarios.
For this purpose this script has been developed. It is located in the folder validate.

The validate script is a two phase script: In the determination phase the script runs
BonnMotion with various parameters and saves hashes and used parameters of the given
BonnMotion output in a SQLite database. In the validation phase the script reads the saved
parameters and hashes from the database, runs the BonnMotion version to validate with the
parameters again, generates hashes of the new output and compares them with the saved
hashes.

11.1 Setup

To be able to run the script you have to adjust the values of the BonnMotion paths in the
config file: validate.cfg.

11.2 Usage

./validate.py

-m, --determine-model [-d, --delete] <filename/folder>

write hash values into database file

[-d, --delete] : (optional) delete saved hash values of this model from

the database

<filename/folder> : filename of modeltest file, or folder with one or more

modeltest files

-M, --validate-model [modelname]

validate bonnmotion models with hash values saved in database file

[modelname] : (optional) name of the model to validate. if no model

provided validate will validate all saved models

[Page 23]

Documentation -24- Bonnmotion

-a, --determine-app [-d, --delete] <filename/folder>

write hash values into database file

[-d, --delete] : (optional) delete saved hash values of this app from

the database

<filename/folder> : filename of apptest file, or folder with one or more

apptest files

-A, --validate-app [appname]

validate bonnmotion apps with hash values saved in database file

[appname] : (optional) name of the app to validate. if no app

provided validate will validate all saved apps

11.3 Determination

In the determination phase the script expects a modified BonnMotion parameter file as com-
mand line input. In this file parameter values can be defined as constant values, vari-
able steps and sets. Variable steps have the format: {begin:end:step}. For instance
{1.0:2.0:0.5} would result in the parameters 1.0, 1.5 and 2.0. Sets have the format
{element1;element2;...;elementn}. Example for a model testparameter file:

model=RandomWaypoint

ignore=3200.0

randomSeed=1276176155501

x=200.0

y=200.0

duration={100.0:300.0:100.0}

nn={10;100;1000}

circular=false

dim=3

minspeed=1.0

maxspeed=1.5

maxpause=60.0

Running the script with this parameter file it would run BonnMotion with these parameter
combinations:

duration nn

100.0 10

200.0 10

300.0 10

100.0 100

100.0 1000

The other parameters would be constant.
If you have to test several sets of parameters which have to be consistent (e.g. number

of nodes have to match groupsizes) than you can provide additional parameters with the
[testcase] keyword. The first parameters in the modeltest file are the default ones. Addi-
tional testcases only have to set the parameters which are different from the default ones.

[Page 24]

Bonnmotion -25- Documentation

Example (appended to the parameters above):

[testcase]

x=1000.0

y=1000.0

This would run all parameter combinations from above also with a scenario-size of 1000
x 1000.

The hashes are saved in the specified database in a table named after the model.

Note: The parameter -d, --delete erases all saved hashes of the model specified before
saving the generated hashes, without further inquiry!

The string {$} is replaced with the current directory path. This can be used to test
models which need additional input files (for example RandomStreet)

11.4 Validation

When validating, the script catches parameters and hashes from the database, runs BonnMo-
tion with the parameters, computes hashes from the output and compares the saved hashes
with the new ones. If no table name is provided all saved models are validated, otherwise
the script expects a table name which exists in the database. After running, the script either
prints that the hashes are identical or it prints an error message with the parameters resulting
different hashes.

11.5 Determination of a BonnMotion app

For validating a BonnMotion app, the script needs a parameter file with four constant pa-
rameters. These parameters must be provided:

app the name of the app

paramsfile is the filename of a model parameter file or the path of a folder with several
modeltest files

extensions is a set of the suffixes the app creates

appparams the parameters of the app

Sample apptest:

app=TheONEFile

paramsfile=randomwaypoint.testparams

extensions={one}

appparams=-l 2

The script runs BonnMotion with the specified testparams file (like with model determi-
nation) and then runs the app with the app-parameters over the output (in this case -l 2) and
saves hashes (with BonnMotion-parameters and app-parameters). The script expects the app
to accept a -f parameter to define the input file. The table name in which the hashes will be
saved is the appname.

[Page 25]

Documentation -26- Bonnmotion

If you need to test multiple parameter values or parameters combinations several test
cases can be defined. A test case can overwrite the extensions and appparams values.

Sample apptest with testcases:

app=LinkDump

paramsfile=modeltests-basic

extensions={ict_50.0;ld_50.0}

appparams=-r 50 -d -j

[testcase]

extensions={ict_100.0;ld_100.0}

appparams=-r 100 -d -j

11.6 Validation of a BonnMotion app

Validation of a BonnMotion app is similar to model validation but you have to specify an app
name. All apps will be validated if no app name is provided.

12 Acknowledgments

The first versions of this software were designed and implemented by Michael Gerharz and
Christian de Waal. Further extensions have been designed and implemented by Nils Aschen-
bruck, Alexander Bothe, Tracy Camp (CSM), Michael Coughlin (CSM), Raphael Ernst, El-
mar Gerhards-Padilla, Tim Heinrich, Karina Meyer, Aarti Munjal (CSM), Patrick Peschlow,
Gary Scheid (CSM), Florian Schmitt, Matthias Schwamborn, and Chris Walsh (CSM). More-
over, contributions to code and this documentation have been made by Elmano Ramalho
Cavalcanti, Martin Giachino, and Yue Cao.

The development of the first versions was supported in part by the German Federal Min-
istry of Education and Research (BMBF) as part of the IPonAir project.

Since 2008, BonnMotion is partially supported by CONET, the Cooperating Objects
Network of Excellence, funded by the European Commission under FP7 with contract number
FP7-2007-2-224053.

The project has also been partially supported by the National Science Foundation (under
CNS-0905513 and CNS-0848130). Any opinions, findings and conclusions, or recommen-
dations expressed in this material do not necessarily reflect those of the National Science
Foundation.

[Page 26]

Bonnmotion -27- Documentation

References

[1] N. Aschenbruck, R. Ernst, and P. Martini, “Indoor mobility modeling,” in Proceedings
of the IEEE Global Communication Conference Workshop on Mobile Computing and
Emerging Communication Networks MCECN, Miami, Florida, USA, 2010.

[2] N. Aschenbruck, E. Gerhards-Padilla, M. Gerharz, M. Frank, and P. Martini, “Mod-
elling Mobility in Disaster Area Scenarios,” Proc. 10th ACM-IEEE Int. Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), pp. 4–12,
2007.

[3] N. Aschenbruck and M. Schwamborn, “Synthetic map-based mobility traces for the per-
formance evaluation in opportunistic networks,” in Proceedings of the 2nd International
Workshop on Mobile Opportunistic Networking, MobiOpp 2010, Pisa, Italy, February
22-23, 2010. ACM, 2010, pp. 143–146.

[4] F. Bai and A. Helmy, “A survey of mobility models,” 2004, http://nile.usc.edu/∼helmy/
important/Modified-Chapter1-5-30-04.pdf.

[5] F. Bai, N. Sadagopan, and A. Helmy, “IMPORTANT: A framework to systematically
analyze the Impact of Mobility on Performance of RouTing protocols for Adhoc NeT-
works,” in Proc. of the IEEE Infocom, 2003, pp. 825–835.

[6] C. Bettstetter, “Mobility modeling in wireless networks: categorization, smooth move-
ment, and border effects,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 5, no. 3, pp. 55–66, 2001.

[7] C. Bettstetter and C. Wagner, “The Spatial Node Distribution of the Random Waypoint
Mobility Model,” in Proc. of the 1st German Workshop on Mobile Ad-Hoc Networks
(WMAN’02), 2002, pp. 41–58.

[8] H. Butler, C. Schmidt, D. Springmeyer, and J. Livni, “Spatial Reference,” 2013, http:
//spatialreference.org/.

[9] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network
Research,” Wireless Communication and Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, vol. 2, no. 5, pp. 483–
502, Sep. 2002.

[10] Universal Mobile Telecommunicatios System (UMTS) - Selection procedures for the
choice of radio transmission technologies of the UMTS, Umts 30.03 version 3.2.0, tr
101 112 ed., European Telecommunications Standards Institute (ETSI), 1998.

[11] GPX Developers, “GPX 1.1 Schema Documentation,” 2012, http://www.topografix.
com/GPX/1/1/.

[12] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A Group Mobility Model for Ad Hoc
Wireless Networks,” Proc. of the ACM Int. Workshop on Modelling and Simulation of
Wireless and Mobile Systems (MSWiM), pp. 53–60, 1999.

[Page 27]

http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf
http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf
http://spatialreference.org/
http://spatialreference.org/
http://www.topografix.com/GPX/1/1/
http://www.topografix.com/GPX/1/1/

Documentation -28- Bonnmotion

[13] S. P. Hoogendoorn and P. H. L. Bovy, “State-of-the-art of vehicular traffic flow mod-
elling,” Journal of Systems and Control Engineering - Special Issue on Road Traffic
Modelling and Control, vol. 215, no. 4, pp. 283–304, 2001.

[14] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark, “Scenario-
based Performance Analysis of Routing Protocols for Mobile Ad-hoc Networks,” Proc.
of the Mobicom, pp. 195–206, 1999.

[15] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evaluation,”
in Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
SIMUTools 2009, Rome, Italy, March 2-6, 2009. ICST, 2009, pp. 1–10.

[16] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: A mobility model for human
walks,” in Proc. of the 28th Int. Conference on Computer Communications (INFOCOM
’09), 2009, pp. 855–863.

[17] B. Liang and Z. J. Haas, “Predictive distance-based mobility management for PCS net-
works,” Proc. of the IEEE Infocom, pp. 1377–1384, 1999.

[18] A. Morton, “DMAP: UTM Grid Zones of the World,” 2013, http://www.dmap.co.uk/
utmworld.htm.

[19] A. Munjal, T. Camp, and W. C. Navidi, “Smooth: A simple way to model human
walks,” in Proceedings of the 14th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM), 2011.

[20] M. Musolesi and C. Mascolo, “Mobility models for systems evaluation,” State of the Art
on Middleware for Network Eccentric and Mobile Applications (MINEMA), 2008.

[21] W. Navidi and T. Camp, “Stationary distributions for the random waypoint mobility
model,” IEEE Transactions on Mobile Computing, vol. 3, no. 1, pp. 99–108, Jan-Feb
2004.

[22] W. Navidi, T. Camp, and N. Bauer, “Improving the Accuracy of Random Waypoint
Simulations through Steady-State Initialization,” in Proceedings of the 15th International
Conference on Modeling and Simulation, 2004, pp. 319–326.

[23] NCSU Networking Research Lab, “Human mobility models download,” 2011, http://
research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw.

[24] OGP Surveying and Positioning Committee, “EPSG Geodetic Parameter Registry,”
2013, http://www.epsg-registry.org/.

[25] M. Schwamborn and N. Aschenbruck, “Introducing Geographic Restrictions to the SLAW
Human Mobility Model,” in accepted for the IEEE 21st International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS ’13), San Francisco, CA, USA, 2013.

[26] TOILERS, “Smooth: A simple way to model human mobility,” 2012, http://toilers.
mines.edu/Public/Code/smooth.html.

[Page 28]

http://www.dmap.co.uk/utmworld.htm
http://www.dmap.co.uk/utmworld.htm
http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw
http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw
http://www.epsg-registry.org/
http://toilers.mines.edu/Public/Code/smooth.html
http://toilers.mines.edu/Public/Code/smooth.html

Bonnmotion -29- Documentation

[27] WISEBED Project, “Deliverable d4.1: First set of well-designed simulations, experiments
and possible benchmarks,” 2009, http://www.wisebed.eu/images/stories/deliverables/
d4.1.pdf.

[Page 29]

http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf
http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf

	Legal notice
	Contact information
	Introduction
	Installation
	Installation on UNIX operating systems
	Installation on Microsoft Windows operating systems

	Running
	Scenario generation
	The Random Waypoint model ("RandomWaypoint")
	The Manhattan Grid model ("ManhattanGrid")
	Gauss-Markov models
	The original Gauss-Markov model ("OriginalGaussMarkov")
	The Gauss-Markov model ("GaussMarkov")

	The Reference Point Group Mobility model ("RPGM")
	Static scenarios ("Static")
	Static scenarios with drift ("StaticDrift")
	Disaster Area model ("DisasterArea")
	Random Street ("RandomStreet")
	Tactical Indoor Mobility Model ("TIMM")
	Self-similar Least Action Walk ("SLAW")
	Map-based Self-similar Least Action Walk ("MSLAW")
	SMOOTH Model ("SMOOTH")
	Steady-State Random Waypoint Model ("SteadyStateRandomWaypoint")
	Random Direction Model ("RandomDirection")
	Random Walk Model ("RandomWalk")
	Probabilistic Random Walk Model ("ProbRandomWalk")
	Boundless Simulation Area Model ("Boundless")
	Column Mobility Model ("Column")
	Nomadic Community Mobility Model ("Nomadic")
	Pursue Mobility Model ("Pursue")
	Chain Model ("ChainScenario")

	Converting scenarios to other formats
	ns-2
	ns-3
	Glomosim / Qualnet
	The ONE
	XML
	IntervalFormat
	WiseML
	ScenarioConverter
	CSVFile

	Importing other formats
	GPXImport

	Scenario analysis
	The Statistics application
	The LinkDump application
	The Dwelltime application

	Scenario visualisation
	Validation
	Setup
	Usage
	Determination
	Validation
	Determination of a BonnMotion app
	Validation of a BonnMotion app

	Acknowledgments
	References

