
BonnMotion

A Mobility Scenario Generation and Analysis Tool

Documentation

Version: November 27, 2015

Copyright c©2015 University of Osnabrück

Documentation -2- Bonnmotion

Contents

1 Legal notice 4

2 Contact information 4

3 Introduction 4

4 Installation 4

4.1 Installation on UNIX operating systems . 5

4.2 Installation on Microsoft Windows operating systems 5

5 Running 5

6 Scenario generation 5

6.1 Boundless Simulation Area Model (“Boundless”) 6

6.2 Chain Model (“ChainScenario”) . 7

6.3 Column Mobility Model (“Column”) . 8

6.4 Disaster Area model (“DisasterArea”) . 8

6.5 Gauss-Markov models . 8

6.5.1 The original Gauss-Markov model (“OriginalGaussMarkov”) 8

6.5.2 The Gauss-Markov model (“GaussMarkov”) 8

6.6 The Manhattan Grid model (“ManhattanGrid”) 9

6.7 Map-based Models . 9

6.7.1 General Usage . 9

6.7.2 Installation of Open Source Routing Machine 10

6.7.3 Random Street (“RandomStreet”) . 11

6.7.4 Map-based Self-similar Least Action Walk (“MSLAW”) 12

6.8 Nomadic Community Mobility Model (“Nomadic”) 12

6.9 Probabilistic Random Walk Model (“ProbRandomWalk”) 12

6.10 Pursue Mobility Model (“Pursue”) . 12

6.11 Random Direction Model (“RandomDirection”) 13

6.12 Random Walk Model (“RandomWalk”) . 13

6.13 The Random Waypoint model (“RandomWaypoint”) 13

6.14 The Reference Point Group Mobility model (“RPGM”) 14

6.15 Self-similar Least Action Walk (“SLAW”) . 14

6.16 SMOOTH Model (“SMOOTH”) . 14

6.17 Static scenarios (“Static”) . 15

6.18 Static scenarios with drift (“StaticDrift”) . 15

6.19 Steady-State Random Waypoint Model (“SteadyStateRandomWaypoint”) . . 15

6.20 Small World In Motion (“SWIM”) . 16

6.21 Tactical Indoor Mobility Model (“TIMM”) 16

6.22 Truncated Lévy Walk (“TLW”) . 16

7 Converting scenarios to other formats 17

7.1 CSVFile . 18

7.2 Cut . 18

7.3 Glomosim / Qualnet . 18

[Page 2]

Bonnmotion -3- Documentation

7.4 IntervalFormat . 18
7.5 ns-2 . 19
7.6 ns-3 . 19
7.7 The ONE . 20
7.8 WiseML . 20
7.9 XML . 21

8 Importing other formats 21
8.1 GPXImport . 21

9 Scenario analysis 22
9.1 The Dwelltime application . 22
9.2 InRangePrinter . 22
9.3 The LinkDump application . 23
9.4 The Statistics application . 23

10 Scenario visualisation 25

11 Validation 25
11.1 Setup . 25
11.2 Usage . 25
11.3 Determination . 26
11.4 Validation . 27
11.5 Determination of a BonnMotion app . 27
11.6 Validation of a BonnMotion app . 28

12 Acknowledgments 28

References 29

[Page 3]

Documentation -4- Bonnmotion

1 Legal notice

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

2 Contact information

eMail:

info@bonnmotion.net

URL:

http://bonnmotion.net/

Postal address:

Nils Aschenbruck
Institute of Computer Science, University of Osnabrück
Albrechtstraße 28, 49076 Osnabrück, Germany

3 Introduction

BonnMotion is a Java software which creates and analyzes mobility scenarios and is most
commonly used as a tool for the investigation of mobile ad hoc network characteristics.
The scenarios can also be exported for several network simulators, such as ns-2, ns-3, Glo-
MoSim/QualNet, COOJA, MiXiM, and ONE. BonnMotion is being jointly developed by the
Communication Systems group at the University of Bonn, Germany, the Toilers group at
the Colorado School of Mines, Golden, CO, USA, and the Distributed Systems group at the
University of Osnabrück, Germany.

4 Installation

To use this software, you need to have a JDK or JRE installed. It has been compiled and
tested with Java v1.8.0 25.

During the installation, a few other shell scripts / batch files are created in the bin folder,
which you can move and rename as you like:

• bm is a wrapper that starts the BonnMotion application. Starting it without command
line parameters prints a detailed help message.

• compile compiles the sources. By default, only applies to files that were changed after
the last compilation. To re-compile all sources, use: compile all.

[Page 4]

http://bonnmotion.net/

Bonnmotion -5- Documentation

• makedoc uses javadoc to create a source code documentation.

Since this distribution does not include pre-compiled class files, the compile script needs
to be executed before the first usage of BonnMotion.

4.1 Installation on UNIX operating systems

If you are using a UNIX platform, simply unpack the archive and run the install script.
You will then be asked for the location of your Java binary path, i.e. the directory containing
the Java interpreter and possibly the Java compiler and the javadoc utility.

NOTE: We have not yet run our shell scripts on other platforms than Linux or Cygwin.
We would be happy if you informed us about changes necessary to run them under other
operating systems so we can incorporate them into our distribution.

4.2 Installation on Microsoft Windows operating systems

NOTE: The batch files for MS Windows have not yet been thoroughly tested.
If you are using Microsoft Windows, please edit the variables JAVAPATH and BONNMOTION

in the install.bat and then execute it.

5 Running

All applications described below are started via the bm wrapper script. The syntax is as
follows:

$./bm <parameters > <application > <application parameters >

The application can be a mobility model or e.g. the Statistics application used to analyze
scenario characteristics.

Starting the script without command line parameters prints further help. Usage examples
are given in the sections below.

6 Scenario generation

Currently, there are several mobility models available, which are introduced later on with
some comments on implementation details. For further details on the models themselves,
please refer to the literature. Various synthetic models were proposed during the last decade.
There have been several general surveys [9, 6, 4, 22] as well as some specific ones for vehicular
models [13].

There are two possibilities to feed input parameters into the scenario generation: The first
is to enter the parameters on the command line, and the second is to have a file containing
the parameters. These two methods can also be combined; in this case, the command line
parameters override those given in the input file.

The scenario generator writes all parameters used to create a certain scenario to a file.
In this way, settings are saved and particular scenario parameters can be varied without the
need to re-enter all other parameters.

Important parameters used with all models are the following: The node number is set
with -n, the scenario duration (in seconds) with -d and the -i parameter specifies how many

[Page 5]

Documentation -6- Bonnmotion

additional seconds at the beginning of the scenario should be skipped. With -x and -y, the
width and height (in meters) of the simulation area are set. Some models (e.g., Random
Waypoint) support 3D movements. Specifying -z sets the depth (in meters) of the simulation
area and results in 3D movement generation. In this case, the output also defaults to 3D.
Otherwise, it defaults to 2D. However, note that the output dimension can be controlled
independently by providing -J <2D|3D> which will overwrite the output dimension according
to the argument provided in any case. With -R, the random seed can be set manually.

Cutting off the initial phase is an important feature and therefore, -i has a high default
value: It has been observed that with the Random Waypoint model, nodes have a higher
probability of being near the center of the simulation area, while they are initially uniformly
distributed over the simulation area. In our implementation of the Manhattan Grid model,
all nodes start at (0,0) for simplicity.

Usage examples:

$./bm -f scenario1 RandomWaypoint -n 100 -d 900 -i 3600

This creates a Random Waypoint scenario with 100 nodes and a duration of 900 seconds.
An initial phase of 3600 seconds is cut off.

A scenario is saved in two files: The first, with the suffix .params, contains the complete
set of parameters used for the simulation. The second, with the suffix .movements.gz contains
the (gzipped) movement data.

Now, you can take a look at the scenario1.params file to see all parameters used for the
simulation, and if you wanted to create a similar scenario, only with a higher mobility, you
can do this with

$./bm -f scenario2 -I scenario1.params RandomWaypoint -h 5.0

which takes the whole parameter set from scenario1.params and overrides the maximum speed
with 5 m/s.

6.1 Boundless Simulation Area Model (“Boundless”)

Creates scenarios according to [9]. A model that converts a 2D rectangular simulation area
into a torus-shaped simulation area - where no boundaries exist. In addition, this model’s
nodes have some special relationships between previous direction of travel and velocity with
its current direction of travel and velocity. In this model, both the velocity vector and position
are updated every ∆t time steps according to the following formulas:

v(t+ ∆t) = min[max(v(t) + ∆v, 0), Vmax];

θ(t+ ∆t) = θ(t) + ∆θ;

x(t+ ∆t) = x(t) + v(t) ∗ cosθ(t);

y(t+ ∆t) = y(t) + v(t) ∗ sinθ(t);

where Vmax is the maximum velocity defined in the simulation, ∆v is the change in velocity
which is uniformly distributed between [−Amax ∗ ∆t, Amax ∗ ∆t], Amax is the maximum
acceleration of a given MN, ∆θ is the change in direction which is uniformly distributed

[Page 6]

Bonnmotion -7- Documentation

between [−α ∗∆t, α ∗∆t], and α is the maximum angular change in the direction an MN is
traveling.

6.2 Chain Model (“ChainScenario”)

The Chain model is not a model itself but a concatenation of implemented models described
in this document. In some cases it is necessary to model scenarios in which mobile nodes
behave in different ways depending on time and position. With the Chain model, the mobile
nodes’ final position of the N-1-th scenario is linked to the initial position of the N-th scenario.

The Chain model works in the following way: it permits to specify a few known models
(e.g., Random Waypoint, Manhattan, RPGM, etc.), each one with its own set of parameters
as they are defined in this documentation. Therefore, it is possible to define the behaviour of
each model separately. Each model that is part of the Chain must be enclosed by quotation
marks (“”) in order to be distinguished from the rest.

In addition to the individual models, Chain model accepts two parameters: -m <mode>

specifies if the initial positions of the N-th scenario have a delay of 2 seconds (mode = 1) or
not (mode = 0, default). The optional parameter -P enables the generation of a set of files
for each individual scenario, in addition to the whole chain scenario.

There are two parameters which must be coordinated along all individual models. The
number of mobile nodes must be the same for all scenarios, otherwise chain scenario generation
will fail. The simulation area may differ between scenarios, but if the final positions of the
N-1-th scenario are out of the scope of the N-th scenario’s simulation area, generation will
also fail.

The following example generates a chain scenario named chainTest and concatenates a
RandomWaypoint and a ManhattanGrid scenario. The complete chain scenario will have a
duration of 400 seconds (200 sec. for each model), and 10 mobile nodes (remember that this
number must be the same for all models). Since the -m parameter is defined as 1, a delay of
2 seconds between the two scenarios will be introduced:

$./bm -f chainTest ChainScenario -m 1 -P "RandomWaypoint -d 200 -n 10 -x 500 -y

500 -o 3" "ManhattanGrid -d 200 -n 10 -x 500 -y 500"

An example of when chain model could help to model a scenario from reality, consider a
city with a campus (could be a factory, university, etc.). It could be interesting to model
mobility inside the campus, and after some time, to see what happens when students move
from campus to their homes.

CAMPUS

The following line generates a chain scenario for this:

[Page 7]

Documentation -8- Bonnmotion

$./bm -f campus ChainScenario -m 1 "RandomWaypoint -d 200 -n 10 -x 100 -y 100 -o

3" "ManhattanGrid -d 200 -n 10 -x 400 -y 300 -u 4 -v 3"

6.3 Column Mobility Model (“Column”)

Creates scenarios according to [9]. A group mobility model where the set of MNs form a line
and are uniformly moving forward in a particular direction. In this model the user will specify
the number of node and number of groups. The number of nodes must be evenly divisible
by the number of groups, i.e., all node group must be completely filled - no lone nodes. The
column of reference points picks a random orientation angle and random movement vector.
The nodes follow their individual reference point across the map. They have a parameter, -s
<maxDist>, that determines how far away their random movements around their reference
point may be - exactly like the Nomadic model.

6.4 Disaster Area model (“DisasterArea”)

Creates scenarios according to [2].

• Tactical areas can be defined with the -b parameter following a list of coordinates for
the area (seperated by “,”). The last three values in this list are type, wanted groups
and transportgroups.

• Type can be 0 for incident location, 1 for patients waiting for treatment area, 2 for
casualties clearing station, 3 for technical operational command and 4 for ambulance
parking point.

• For every specified incident location there must be a patients waiting for treatment area
specified, for every patients waiting for treatment area a casualties clearing station and
for every ambulance parking point a casualties clearing station.

6.5 Gauss-Markov models

6.5.1 The original Gauss-Markov model (“OriginalGaussMarkov”)

This implementation of the Gauss-Markov model follows the publication [17]. In this imple-
mentation, the mean velocity vector mu is not specified directly; instead, the norm is specified
using -a and a random vector with this norm is assigned to each station. Of course, a norm of
0 yields only the vector (0,0). The implementation also allows the user to specify a maximum
speed. A velocity vectors with a larger norm will be multiplied with an appropriate scalar to
reduce the speed to the maximum speed.

The model has been adapted to deal with scenario borders in the following way: If a
station moves onto the border, its velocity vector as well as its expected velocity vector are
“mirrored”.

6.5.2 The Gauss-Markov model (“GaussMarkov”)

This is the implementation of the Gauss-Markov model, which rather follows the description
in [9], though it is not the same. The main commonalites are that for each mobile node,
two seperate values are maintained instead of one speed vector: The mobile’s speed and

[Page 8]

Bonnmotion -9- Documentation

its direction of movement. Also the default method of handling mobile nodes that move
out of the simulation area is closely related to [9]: Nodes may continue to walk beyond the
area boundary, which causes the next movement vector update not to be based on the prior
angle, but on an angle that brings the nodes back onto the field. Therefore, the field size is
automatically adapted to the node movements after scenario generation.

The main difference to [9] is that new speed and direction of movement are simply chosen
from a normal distribution with a mean of the respective old value (the standard deviation
is specified on the command line using -a and -s). Speed values are constrained to a certain
interval that can be specified on the command line using -m and -h: If a newly chosen speed
value is outside of this interval, it is changed to the closest value inside of the interval (which
is either the minimum or the maximum value).

The behaviour described above can be modified with several command line switches: Using
-b, the size of the simulation area is fixed and nodes simply “bounce” at the area boundaries.
Using -u, the speed values outside of the valid speed interval are adapted in a way that leads
to a uniform distribution of node speeds (instead of peaks around the interval boundaries).

6.6 The Manhattan Grid model (“ManhattanGrid”)

The Manhattan Grid model is introduced in [10]. In this model, nodes move only on predefined
paths. The arguments -u and -v set the number of blocks between the paths. As an example,
-u 3 -v 2 places the following paths on the simulation area:

Our implementation contains some (reasonable) modifications of the Manhattan Grid
model:

1) An additional parameter we introduce is the minimum speed of a mobile node. This is
helpful because the speed of a mobile can be arbitrarily close to 0 and since the model defines
that the speed is to be updated in distance intervals, there can be very long periods of very
slow node movement without this parameter.

2) The possibility to have nodes pause was added with help of two additional parameters:
The pause probability (if a node does not change its speed, it will pause with that probability)
and the maximum pause time.

Note that it is especially important to cut off an initial phase with this model, because in
our implementation, all nodes start at the same position (0,0).

6.7 Map-based Models

6.7.1 General Usage

Map-based mobility models in BonnMotion require (i) an OpenStreetMap (OSM) map file
(in pbf format1) and (ii) a URL to a server running an instance of Open Source Routing

1http://wiki.openstreetmap.org/wiki/PBF_Format

[Page 9]

http://wiki.openstreetmap.org/wiki/PBF_Format

Documentation -10- Bonnmotion

Machine (OSRM)2, dedicated to computing optimal routes on the road network. OSM map
extracts can be downloaded from, e.g., Geofabrik3. For validation purposes, we set up an
OSRM (v4.8.1) instance with a small map extract. However, in order to start productively
using a map-based model, you need to set up an instance of OSRM yourself. Instructions on
how to accomplish this can be found in Section 6.7.2. Note that bigger map extracts result in
bigger graphs and require a fair amount of computing resources. Smaller-sized map extracts
should, however, pose no problem for user-grade computers.

As described in [29], the way geographic restrictions are modeled in BonnMotion raises the
question of how to cope with routes which cross the border of the bounding box (simulation
area). The -C parameter controls the clipping method used in these cases. Currently, there
are three options (cf. [29]):

CLIP RESIZE BB: Do not clip routes but resize the bounding box instead after the mobility
generation has finished to include all routes (‘-C 0’).

CLIP USE NEW LENGTH: Clip routes and use the length of the (new) segments connecting the
clipping points (‘-C 1’).

CLIP USE OLD LENGTH: Clip routes and use the total length of the (old) route part outside
the bounding box (‘-C 2’).

Another distinctive feature of map-based models in BonnMotion is the generation of a
.movements.geo.gz file in addition to the .movements.gz file. This output file includes all
waypoints as lon/lat pairs in decimal degrees (see [29] for the reasoning behind this). All Eu-
clidean (x, y)-coordinates in the .movements.gz file are projections of the lon/lat-coordinates
using the Web Mercator projection (EPSG:3857). Furthermore, a .road network.dat file is
generated, containing data about the road network graph defined by the input OSM map
extract and the bounding box.

All map-based models share the following parameters:

-B <left > <bottom > <right > <top > : GPS coordinates (lon/lat in decimal degrees)

of scenario bounding box. Must be inside the OSM map extract.

[-C <clipping method >] : A number {0,1,2} indicating the clipping

method to use for routes crossing the border of the bounding box. Default is 0

for CLIP_RESIZE_BB.

[-m <route service metric string >] : A string (" Pedestrian" or "Car") defining the

metric used by the routing service for computing optimal routes. Currently has

no effect since the OSRM URL already defines the metric used by that instance.

Default is "Pedestrian ".

-o <OSM (.pbf) input file > : OSM map extract defining the road network.

Must be identical to or a subset of the input map for OSRM.

-u <route service URL > : URL to the OSRM routing service instance.

6.7.2 Installation of Open Source Routing Machine

As mentioned in Section 6.7.1, it is necessary to set up OSRM. All map-based models have
been tested with OSRM v4.8.1, so we recommend to use this version. However, newer
versions might also work. NOTE: For validation purposes only, we have already set up an
OSRM server and you only need to install your own instance if you want to start productively
using a map-based model. The necessary steps for installing your own OSRM instance are as
follows:

2http://project-osrm.org/
3http://download.geofabrik.de/

[Page 10]

http://project-osrm.org/
http://download.geofabrik.de/

Bonnmotion -11- Documentation

1. Get OSRM v4.8.1

$ wget https :// github.com/Project -OSRM/osrm -backend/archive/v4.8.1.tar.gz

$ tar xvfz v4.8.1.tar.gz

$ cd osrm -backend -4.8.1

2. Copy source code changes (for minimal JSON responses)

$ cp -a $BM/doc/OSRM/osrm -backend -4.8.1/descriptors /* descriptors/

3. Compile4

$ mkdir -p build; cd build; cmake ..; make

4. Create symlink5

$ ln -s ../ profiles/lib lib

5. Copy lua profile files and scripts to build-dir6

$ cp -a $BM/doc/OSRM/osrm -backend -4.8.1/build/* .

6. Prepare OpenStreetMap PBF file (e.g., extract from planet.osm.pbf)

$./ prepare_pbf.sh maps/map_extract

7. Run OSRM server instance

$./ start_routed.sh maps/map_extract.osrm 5001 12

8. Use same (or subset of) map extract for your map-based mobility model

6.7.3 Random Street (“RandomStreet”)

Creates scenarios according to [3]. Note that in BonnMotion versions prior to 3.0.0, an
additional input parameter file was necessary. Since the re-write of map-related code for
version 3.x, all input parameters can be set directly on the command line.

RandomStreet parameters:

-p <maxPause > : Maximum pause time in seconds.

-s <minSpeed > <maxSpeed > : Minimum and maximum speed in m/s.

4https://github.com/Project-OSRM/osrm-backend/wiki/Building%20OSRM
5https://github.com/Project-OSRM/osrm-backend/wiki/Running-OSRM
6https://github.com/sosm/cbf-routing-profiles/

[Page 11]

https://github.com/Project-OSRM/osrm-backend/wiki/Building%20OSRM
https://github.com/Project-OSRM/osrm-backend/wiki/Running-OSRM
https://github.com/sosm/cbf-routing-profiles/

Documentation -12- Bonnmotion

6.7.4 Map-based Self-similar Least Action Walk (“MSLAW”)

Creates scenarios according to [28]. Note that in BonnMotion versions prior to 3.0.0, an
additional input parameter file was necessary. Since the re-write of map-related code for
version 3.x, all input parameters can be set directly on the command line.

MSLAW parameters:

-w <Number of waypoints > : Number of waypoints to generate during initialization.

-p <Minimum pause time > : Minimum pause time in seconds.

-P <Maximum pause time > : Maximum pause time in seconds.

-b <Levy exponent > : Levy exponent for pause time.

-h <Hurst parameter > : Hurst parameter for self -similarity of waypoints.

-l <distance weight > : Distance weight used by LATP algorithm.

-r <clustering range > : Clustering range in meters.

-Q <Cluster ratio > : Cluster ratio as divisor (ratio is then 1/ divisor).

-W <waypoint ratio > : Waypoint ratio as divisor (ratio is then 1/ divisor).

-s <minSpeed > <maxSpeed > : Minimum and maximum speed in m/s.

-D <distance metric > : Metric to use for distance calculations. One of

["Route "|" Flight "] (default is "Route ").

6.8 Nomadic Community Mobility Model (“Nomadic”)

Creates scenarios according to [9]. A group mobility model where a set of MNs move together
from one location to another. An example scenario this model simulates would be a guided
tour of a city or museum. The tour guide and tourists move from spot to spot and they would
all roam around each particular location individually.

Each group of mobile nodes has an invisible reference node that they follow around the
simulation. Once the reference point changes, all of the mobile nodes travel to the new
location and begin roaming. Their roaming is defined by picking random locations within
some predefined roaming radius of the reference point. This maximum roaming distance is
defined by the -r flag.

6.9 Probabilistic Random Walk Model (“ProbRandomWalk”)

Creates scenarios described in [9]. A model that utilizes a set of probabilities to determine the
next position of an MN. The model utilizes a probability matrix that defines the probabilities
of a node moving forwards, backwards, or remaining still in both the x and y direction. Once
the direction of travel has been determined, the node will travel with a fixed speed (as per
the Toilers’ code) for a specified allotment of time. This amount of time is set with the -t

flag. The desired time should follow the flag after a space, e.g., -t 15, for 15 seconds.

6.10 Pursue Mobility Model (“Pursue”)

Creates scenarios according to [9]. This model attempts to represent nodes tracking a single
targeted node. This model could represent police forces chasing down a criminal on the run.
The model uses Random Waypoint with no pauses to move the pursued target. The model
uses one equation to update the position of each pursuing node:

new position = old position+ acceleration(target− old position) + random vector

Where acceleration(target − old position) is information on the movement of the node
being pursued and random vector is a random offset for each node. The random vector is

[Page 12]

Bonnmotion -13- Documentation

a vector in a random direction with a configurable magnitude by using the -m flag. You will
want to keep this magnitude low (0 - 10) to ensure the pursuing nodes maintain effective
tracking of the target.

6.11 Random Direction Model (“RandomDirection”)

Creates scenarios described in [9]. A model that forces MNs to travel to the edge of the
simulation area before changing direction and speed. This model does not suffer from the
density waves in the center of the simulation space that Random Waypoint model does. In
this model, MNs choose a random direction in which to travel similar to the Random Walk
Mobility Model. An MN then travels to the border of the simulation area in that direction.
Once the simulation boundary is reached, the MN pauses for a specified time, chooses another
angular direction (between 0 and 180 degrees) and continues the process.

6.12 Random Walk Model (“RandomWalk”)

Creates scenarios described in [9]. A simple mobility model based on random directions and
speeds. In this mobility model, an MN moves from its current location to a new location by
randomly choosing a direction and speed in which to travel. The new speed and direction
are both chosen from predefined ranges, [speedmin, speedmax] and [0, 2π] respectively. If an
MN which moves according to this model reaches a simulation boundary, it “bounces” off
the simulation border with an angle determined by the incoming direction. The MN then
continues along this new path. This model can be configured such that the nodes continue
along their path for a set amount of time or a set distance. This can be set by the -t flag
for time limited mode, or by the -s for distance limited mode. The desired time or length
should follow the flag after a space e.g., -t 10.

6.13 The Random Waypoint model (“RandomWaypoint”)

If you provide a depth, i.e., the -z parameter is provided, BonnMotion assumes you want
to create a 3D scenario. Our implementation includes a feature to restrict the mobiles’
movements: With -d 1, nodes move only along the x-axis, with -d 2, nodes move either
along the x- or along the y-axis (with a probability of 0.5 each) and with the default -d 3,
it is the classical 2D Random Waypoint model as you know it. For 3D scenarios, there are
two more options: With -d 4, nodes move either on x or y or z and with -d 5 you get the
classical 3D Random Waypoint behavior.

Another feature is the -c switch that causes positions to be chosen from a circle that fits
into the simulation area rather than from the simulation area itself.

Instead of choosing new destinations uniformly distributed from the simulation area, “at-
traction points” can be defined with the -a parameter, followed by the data characterizing
the attraction points. Each attraction point is defined by five floating point numbers, in this
order: < coordx >,< coordy >,< intensity >,< stddevx >,< stddevy >.

• The coordinates < coordx >,< coordy > give the attraction point’s position.

• The intensity levels weight the attraction points: A point with an intensity x times as
high as another point’s will also attract a node with a probability which is x times as
high.

[Page 13]

Documentation -14- Bonnmotion

• The last two parameters are the standard deviations of the Gaussian distribution with
mean 0 that is used to determine the nodes’ distances to the attraction point on dimen-
sion x and y, respectively.

The parameters for several attraction points are simply concatenated, seperated by com-
mas. For example, to place two attraction points on the simulation area, the first at (100,100)
with intensity 1 and both standard deviations 20, the second at (350,200) with intensity 1.5
and standard deviations 31 and 35, use: -a 100,100,1,20,20,350,200,1.5,31,35.

6.14 The Reference Point Group Mobility model (“RPGM”)

The implementation of this model [12] includes the possibility to have “dynamic” groups:
When a node comes into the area of another group, it changes to this new group with a
probability that can be set with -c <probability>. Deactivate this feature with -c 0.
Note that when this feature is activated, “empty” groups may be moving along the simulation
area and nodes coming into their areas may change their memberships to these.

6.15 Self-similar Least Action Walk (“SLAW”)

Creates scenarios according to [16]. The implementation is loosely based on the Matlab code
provided by the authors [25].

6.16 SMOOTH Model (“SMOOTH”)

Creates scenarios described in [21]. SMOOTH presents a mobility model that is both realistic
and simple by creating traces that match human movements in a manner that is simple to use.
The movements that are generated by SMOOTH follow power-law distribution, and the move-
ments of the mobile nodes are generated by a predetermined probability. As SMOOTH takes
into account the fact that node movements can be predicted to some extent, the movements
generated are also influenced by their previous movements.

SMOOTH initially places each node near a cluster, with more nodes being placed near
clusters with a higher popularity. These clusters are distributed evenly about the simulation
area, and far enough apart so that no cluster is in the transmission range of another. When
a node changes location, the node transitions to either a new location, or a previously-visited
location, based on predetermined probabilities. These movements, as well as the time that
a node pauses at a location, are power-law distributed. The implementation is based on C
code provided by [30].

Parameters for SMOOTH:

-g <range > : Transmission range of mobile nodes.

-h <clusters > : Total number of clusters in the network.

-k <alpha > : Alpha value for the flight distribution.

-l <f_min > : Minimum value for the flight distribution.

-m <f_max > : Maximum value for the flight distribution.

-o <beta > : Beta value for the pause -time distribution.

-p <p_min > : Minimum value for the pause -time distribution.

-q <p_max > : Maximum value for the pause -time distribution.

[-s <print >] : (optional) Specifies what variable is to be printed to

the command line. All options will be printed to output

file in all cases , or if the option is not specified.

Valid options are: ’CN’, ’CT ’, ’ICT ’ or ’ALL ’.

[-t <max_locations >] : (optional) Specifies the maximum number of locations for

the scenario (default: 20000).

[Page 14]

Bonnmotion -15- Documentation

6.17 Static scenarios (“Static”)

By default, nodes in static scenarios are homogeneously distributed over the simulation area.
There are two possibilities for non-homogeneous node distributions:

• Attraction points can be defined with the -a parameter; a detailed explanation of this
feature is given in the “Random Waypoint” section.

• With the -l parameter, the simulation area can be divided into several areas with
different node densities along its x-axis. Given the number n of density leves, each of
the n areas will contain a fraction of approximately 2 ∗ k/(n ∗ (n + 1)), 1 ≤ k ≤ n, of
the nodes. (The density decreases from left to right.)

The following example shall illustrate this: Distributing 150 nodes on a 300m x 300m field
with 3 density levels, approx. 75 nodes will lie within the rectangle area with the corners
(0,0) and (100,300), approx. 50 nodes will lie within (100,0) and (200,300) and approx. 25
nodes will lie within (200,0) and (300,300).

6.18 Static scenarios with drift (“StaticDrift”)

In this model the user has to provide an input file with the initial positions of all nodes.
The positions are drifted along ajustable intervals and saved as a BonnMotion scenario. The
format of the input file has to be:

x1 y1 z1

x2 y2 z2

...

Each row of the file belongs to the position of one node.

∆x and ∆y are defined with the -X and -Y parameters . If ∆x and ∆y should be equal
the value can be set with the parameter -B. The final position of one node n is [xn−∆x, xn +
∆x], [yn −∆y, yn + ∆y]. There is no movement in this model.

6.19 Steady-State Random Waypoint Model (“SteadyStateRandomWay-
point”)

The Steady-State Random Waypoint Mobility Model [23, 24] uses the random waypoint
model, where a node picks a random point on the simulation area and a random speed
and then travels to that point at the chosen speed. Once it arrives, the node pauses for a
randomly chosen pause time, and then repeats the process until the simulation ends. The
Steady-State Random Waypoint Mobility Model picks initial node positions, speeds, and
pause times according to the steady-state distributions of the random waypoint model, so
that no time is required to let the distributions of position and speed settle at the beginning
of the simulation.

Parameters for SteadyStateRandomWaypoint:

-o <speed mean > : Specifies mean speed (must be > 0).

-p <speed delta > : Specifies speed delta (must be >= 0).

-k <pause mean > : Specifies mean pause time (must be >= 0).

-l <pause delta > : Specifies pause delta (must be >= 0).

[Page 15]

Documentation -16- Bonnmotion

NOTES: The minimum speed must be positive, because the steady-state distribution is
degenerate when the minimum speed is 0. An end time of zero only gives the initial configu-
ration of the nodes without any movement.

This implementation is based on mobgen written by Jeff Boleng <jeff@boleng.com>
(Ph.D. 2002 from the Colorado School of Mines) and mobgen-ss by Nick Bauer (M.S. 2004
from the Colorado School of Mines).

6.20 Small World In Motion (“SWIM”)

Creates scenarios according to [18]. The implementation is based on the C++ code provided
by the authors [19].

6.21 Tactical Indoor Mobility Model (“TIMM”)

Creates scenarios according to [1]. Tactical Indoor Mobility Model (TIMM) models the node
movement according to a small ruleset (cf. Figure 1) with an underling graph representing
the building.

Building graph

The building graph file contains the graph representation of the underling building/sce-
nario. Lines starting with # are ignored, starting with Pos= are interpreted as vertexes.
The syntax is:

Pos=<NodeName>,x,y,NeighborNode1;NeighborNode2;...;NeighborNodeN,<Type>

Valid types are ROOM, DOOR, STRUCT, and DISTANCE. The model does not distinguish
between ROOM, STRUCT, and DISTANCE. However, the intention is to use ROOM for vertexes
representing rooms and STRUCT for vertexes, which are required to model the building
structure. DISTANCE vertexes should not be inserted into the building graph file. These
are created by the model if necessary, due to the configured maximal distance between
vertexes in the graph. Exactly one vertex must be labeled as StartVertex. An example
building graph file is located in the doc/TIMM example folder.

Door opening time

This parameter is used to determine how long it takes to secure a room. This includes
opening the door, looking in the room, and taking necessary steps.

Keep in mind, that movements in tactical and non-tactical scenarios are completely dif-
ferent! An example parameter file is located in the doc/TIMM example folder.

6.22 Truncated Lévy Walk (“TLW”)

Creates scenarios according to [27]. The implementation is based on the MATLAB code
written by Kyunghan Lee (KAIST) [25]. The TLW model uses a specific speed model com-
bined with a simple random walk model in which a walker follows a sequence of steps. A
step contains the direction, length and duration of a flight followed by a pause time. At the

[Page 16]

Bonnmotion -17- Documentation

Rule:
Time Limit

Rule:
Distance Limit

Target Choice

Move Group

Group
Segmentation

No Targets LeftMultiple Targets

Distance Limit Reached

Time Limit Reached

Figure 1: Schematic view of the TIMM ruleset

beginning of each step, a walker chooses a random direction within [0◦, 360◦], a finite random
flight time and values from a bundle of randomly generated flight lengths and pause times,
which are Lévy distributions with coefficients falpha and palpha. The flight length coefficient
falpha and the pause time coefficient palpha have to be in [0.1, 2]. With the parameter -c,
you can set the flight length scale factor (the pause time scale factor is always set to 1). With
the -t and -p parameters, you can change the truncation points for the flight lengths and
the pause times.

Parameters for TLW:

-a <falpha > : flight length alpha

-b <palpha > : pause time alpha

-c <scale > : flight length scale factor

-t <f_trunc > : flight length truncation (meters)

-p <p_trunc > : pause time truncation (seconds)

7 Converting scenarios to other formats

The native format in which BonnMotion saves the movement traces is node-by-line waypoint
based. This means that there is one line for each node. This line contains all the waypoints.
A waypoint is a position at which the movement of a node (e.g. direction, velocity) changes.
A waypoint consists of:

• the simulation time in seconds at which the waypoint is reached by the node

• the x and y coordinates of the position of the waypoint.

MiXiM (http://mixim.sourceforge.net/) is a simulation framework for wireless and mo-
bile networks, which can handle the BonnMotion trace format without converting.

[Page 17]

http://mixim.sourceforge.net/

Documentation -18- Bonnmotion

The Simulation platform COOJA (http://www.contiki-os.org/) can be used with Bon-
nMotion traces, using the WiseML format (see: section 7.8).

7.1 CSVFile

When processing a generated mobility scenario with third-party tools, a general CSV-for-
matted file might be more useful than the native Bonnmotion format. The “CSVFile” app
converts a mobility scenario to a comma-separated value file (suffix .csv), where each line
contains the tuple (i, t, x, y), where i is the node ID, t the simulation time, and (x, y) the
position of the waypoint. If the scenario is 3D, there is also a 5th value (z-coordinate).

Parameters for CSVFile:

-f <filename > : Specifies scenario name.

[-d <delimiter >] : (optional) Specifies delimiter (default: " ").

[-h] : (optional) Print header (default: no header).

7.2 Cut

The “Cut” application reads an existing scenario and extracts the movement within a time
interval given by start (-b) and end time (-e) parameters. This extract is written to a new
scenario with corresponding .movements.gz and .params files. Note that the scenario names
are base names and may not contain any file suffixes.

Parameters for Cut:

-f <filename > : Specifies scenario name (input).

-d <filename > : Specifies name of new scenario (output).

-b <starttime > : Start time of interval.

-e <endtime > : End time of interval.

7.3 Glomosim / Qualnet

The “GlomoFile” application creates files with two suffixes. The first is .glomo nodes and
the second one is .glomo mobility. They can be used with Glomosim (2.0.3) and Qualnet
(3.5.1). Use the -q switch for Qualnet: This causes nodes to be numbered starting at 1, not
at 0.

7.4 IntervalFormat

The native format implies that during the simulations for each event the current node positions
have to be calculated based on the waypoints. If there are many events, this may have a
negative impact on the runtime of a simulation. An alternative is to use an interval based
approach. The nodes are regarded as stationary for an interval. The positions of the nodes
are updated periodically after each interval by a specific position update event. By doing so,
the current node positions do not have to be calculated for each event. However, the number
events is increased, which may also influence the runtime of a simulation negatively. A factor
that has a major impact in this context is the interval length. Smaller intervals yield higher
accuracy but also more events. Overall, it is a trade-off between the number of events and
the runtime per event.

Trace files in the BonnMotion’s native trace format can be transformed to an interval-
based format using the IntervalFormat application. The interval length can be specified using

[Page 18]

http://www.contiki-os.org/

Bonnmotion -19- Documentation

the -l option. The default value is one second. The interval trace format is an interval-by-line
based. This means that there is one line for each interval of each node. A line consists of:

• the node number

• the simulation time in seconds (in intervals)

• the x and y coordinates of the position of the node for the interval

The IntervalFormat application prints the waypoints (ordered by node and time) for every
interval step.

• The used interval can be specified using the -l switch.

• Using the -s switch the header can be skipped

7.5 ns-2

The “NSFile” application is used to generate two files that can be integrated into a TCL
script to start an ns-2 simulation via the “source” command.

The file with the suffix .ns params sets some variables needed to set up the simulation in
an array named val: the keys x and y refer to width and height of the simulation area, nn
refers to the number of nodes and duration to the duration of the simulation.

The file with the suffix .ns movements schedules the movements of the node objects that
are expected to be in an array named “node ”, numbered starting at 0. The simulator object
is expected to be in the variable “ns ”.

As a side note, the “NSFile” application places an additional margin around the simula-
tion area, because ns-2 versions up to 2.34 regularly crash when nodes move at the border of
the simulation area. (Actually, this has only been observed with the Manhattan Grid model
up to now, but this procedure is generally carried out just to play it safe.)

Usage example:

$./bm NSFile -f scenario1

This creates the two files scenario1.ns params and scenario1.ns movements.

The NSFile command line switches:

Parameters for NSFile:

-f <filename > : BonnMotion scenario to convert.

[-b <margin >] : (optional) Adds an additional margin around the simulation area ,

because ns -2 versions up to 2.34 crash when nodes move at the

border of the simulation area (default: 10).

[-d] : (optional) Disables the usage of module specific converters

(e.g. for DisasterArea) and uses the standard converter instead.

7.6 ns-3

The “NSFile” (cf. Section 7.5) application can be used to generate movements for ns-3 as
it supports ns-2-movementfiles. As ns-3 does not crash if nodes move at the border, the
additional margin can be disabled with the parameter -b.

An example script for ns-3 is given in doc/ns3.

[Page 19]

Documentation -20- Bonnmotion

7.7 The ONE

The “TheONEFile” application creates a file with the suffix .one, which can be used with the
ONE simulator [15]. Use the -l parameter to set the sampling interval between two positions
of the same node (the default is 1s).

Usage example:

$./bm TheONEFile -f scenario1 -l 5

This creates the file scenario1.one with a sampling interval of 5s.

7.8 WiseML

WiseML [31] is a description format allowing a standardized storage of traces of experiments.
It is based on GraphML and used within the WISEBED Project (http://www.wisebed.eu/).
Each experiment trace is stored within one file and contains all needed information to identify
and reproduce a simulation trace. This BonnMotion application allows the conversion of
BonnMotion’s native format into WiseML.

The WiseML app has two basic modes of operation. One mode is interval-based, where
the positions of all nodes of the scenario are printed at each interval (needs to be provided
with the -L switch). In contrast, in the contact-based mode the position of all nodes are
printed only whenever any node enters or leaves the communication radius of another node.
The contact-based mode is activated by providing a transmission range with the -r switch.
By setting the -o switch only positions of nodes, which links change, are printed. If the -e

switch is used it is also printed which links were disabled or enabled. This information is given
by <enableLink source=nodeid target=nodeid \> and <disableLink source=nodeid

target=nodeid \> tags. Note that you can also combine the two modes by using both the
-L and -r switch.

The dimension of the output of the WiseML conversion depends on the presence of a
depth in the scenario you want to convert. In other words if the parameter file contains a
z-value, the dimension of the output of WiseML will be 3D. Else it will be 2D.

The WiseML converter offers various command line switches to tune the output to the
desired format.

Parameters for WiseML:

-f <filename > : BonnMotion scenario to convert.

-L <double > : Interval length between two timestamps

(interval -based mode).

-r <double > : Transmission range (contact -based mode).

[-a <altitude >] : (optional) Default z value (BonnMotion 1.5 does not

support 3D traces).

[-c <compressionlevel >] : (optional) Compression of the output (0 = NONE ,

1 = No tabs , 2 = No tabs , no newlines).

[-F <path to file >] : (optional) Path to XML footer to include in output.

[-H <path to file >] : (optional) Path to XML header to include in output.

[-I] : (optional) Output integer values for the timestamps

instead of doubles.

[-N <path to file >] : (optional) Path to nodeId names. Each row should

contain one name.

[-e] : (optional) Print which links were enabled/disabled

(contact -based mode).

[-o] : (optional) Print only positions of nodes , which links

are changing (contact -based mode)

[Page 20]

http://www.wisebed.eu/

Bonnmotion -21- Documentation

7.9 XML

The “SPPXml” application is used to generate mobility files in XML format according to
the XML schema proposed by Horst Hellbrück as a standardised mobility file format for
the research program “Schwerpunktprogramm 1140” (http://www.tm.uka.de/forschung/
SPP1140/) of the DFG (Deutsche Forschungsgemeinschaft).

SPPXml has an additional parameter -r that allows to specify a uniform radio range for
all nodes. If this parameter is omitted, a radio range of 250m is used. BonnMotion does not
use this radio range in any way. It is however required by the XML schema.

The XML schema corresponding to the XML files generated by “SPPXml” is defined in:

http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd

The contrib directory furthermore includes a python program sppmob2bonnmotion.py

that convertw XML mobility traces to the BonnMotion format. It has been tested with
Python 2.3.

8 Importing other formats

8.1 GPXImport

GPXImport can be used to import multiple Global Positioning System (GPS) Exchange
Format (GPX) files [11] and convert them into one BonnMotion mobility scenario (native
format). In default mode, GPXImport only imports the longitude and latitude values of all
tracks in all input files. GPX waypoints (note that a GPX does not necessarily have the
same semantics as a BonnMotion waypoint) and routes have to be imported explicitly with
-w and -r, respectively. In general, GPX trackpoints, routepoints, and waypoints need to be
associated with a timestamp, otherwise they will be ignored.

Tracks or routes with src tags will be assigned to one node per src tag in the mobility
scenario. In particular, tracks and/or routes associated with the same src tag are assumed
to belong to a single node. Tracks or routes without src tags will be assigned to an extra
node, each. Furthermore, all GPX waypoints of one input file are assumed to belong to a
single extra node.

Although there are GPS receivers which support a position logging frequency of more than
1Hz, GPX does not support time resolution beyond seconds. Therefore, multiple positions
might have the same timestamp associated with them. In this case, the positions are equally
distributed within that one second, i.e., n positions with timestamp t are converted to the
same positions with times t, t+ 1

n , . . . , t+ n−1
n , respectively.

Since GPS uses World Geodetic System (WGS)84 as its Coordinate Reference System
(CRS), the longitude and latitude values first need to be projected to a Cartesian coordinate
system (cf. -p parameter). In order to make the projection as precise as possible, a best-
match projected CRS has to be selected for the GPX input file(s) (see [8, 26]). For example, if
you would like to use Universal Transverse Mercator (UTM) zone 32N (cf., e.g., [20]) as your
projected CRS, the parameter value should be “epsg:32632” (European Petroleum Survey
Group (EPSG) code 32632).

The command line parameters of GPXImport are as follows (also see bm -ha GPXImport):

Parameters for GPXImport:

-f <GPX file > : Input file name(s).

-p <CRS name > : Name of the projected CRS for coordinate transformation.

-F <filename > : Output file name (mandatory in case of multiple input files).

[Page 21]

http://www.tm.uka.de/forschung/SPP1140/
http://www.tm.uka.de/forschung/SPP1140/
http://www.i-u.de/schools/hellbrueck/ansim/xml/sppmobtrace.xsd

Documentation -22- Bonnmotion

[-c] : (optional) If set , the created movement file will be compressed.

[-h] : (optional) If set , the z-coordinate (altitude/elevation) of the

positions is also imported and a 3D scenario is created.

[-H] : (optional) Sets default z-coordinate for positions with an

invalid/missing value (default: 0).

[-r] : (optional) If set , the GPX routes are imported.

[-w] : (optional) If set , the GPX waypoints are imported.

Usage examples:

$./bm GPXImport -f path/to/BoiseFront.gpx -p epsg :32611 -c -w -r

This imports all tracks, routes, and waypoints from the GPX file path/to/BoiseFront.gpx

and transforms the positions using EPSG code 32611 (UTM zone 11N). The output files are
BoiseFront.param and BoiseFront.movements.gz in folder path/to/.

$./bm GPXImport -f BoiseFront.gpx clementine_loop.gpx -p epsg :32611 -F Test -w -r

This imports all tracks, routes, and waypoints from both GPX files and transforms the posi-
tions using UTM zone 11N. The output files are Test.param and Test.movements.

9 Scenario analysis

9.1 The Dwelltime application

The “Dwelltime” application creates statistics on how long nodes stay in a certain area (small
square cells) of the simulation area. Based on the cumulative dwell time of the nodes in each
cell, a two-dimensional histogram is created (cf. [7]). Let c be a cell and dn(c) the dwell time
of node n ∈ N in c for the whole simulation time s, then the dwell time d(c) is defined as:

d(c) :=

∑
n∈N dn(c)

|N | · s

Two output files are created by this app: One file with suffix .bettstetter statistics

containing one line for each cell with values (x, y, d(c)). The second file has the suffix
.bettstetter statistics2 and contains the same values, but only for cells with d(c) > 0.

Parameters for Dwelltime:

-f <filename > : Specifies scenario name.

-m <cell length > : Specifies cell length (default: 0.5m).

-t <time step > : Specifies discrete time step (default: 0.5s).

9.2 InRangePrinter

The InRangePrinter app can be used to get information about the connectivity of nodes in
the scenario. It has two modes:

• Interval mode: This mode is used to print periodically information about distances
to the other nodes. Giving a range changes the output into a binary format indicating
nodes in range with 1, out of range nodes with 0.

• Range mode: The range mode prints the network topology whenever a node leaves
or enter the range of another mode

[Page 22]

Bonnmotion -23- Documentation

The app uses a line based format. All lines start with a timestamp followed by per node
information in blocks starting and ending with square brackets (”[” and ”]”). Each entry in
these blocks gives the distance or the indication of in-/out-of-range for a node. The node
itself is omitted.

Example for a two node scenario where all nodes are in range at the beginning and leave
the range after 1s simulation time:

0 .0 [1][1]

1 .0 [0][0]

Usage examples:

$./bm -f IRP RandomWaypoint -n 3

$./bm InRangePrinter -f IRP -l 1.0

9.3 The LinkDump application

The LinkDump application prints information about every single link within a certain time
span of a scenario. This information can e.g. be used for a simulator that does not directly
model mobility at all. To use the LinkDump application, setting the transmission range using
the -r parameter is necessary.

Using the -d switch, only the link durations are printed. This offers more insight into the
distribution of link durations than the averaged value calculated by the Statistics application.
In this case, the -w switch prevents that wrong durations are printed out due to links that go
up before simulation begin or go down after simulation end.

In addition to the link durations, the inter-contact times can be obtained using the -j

parameter. Additionally you can use the -t parameter to show the “start time” for each
inter-contact time. Since version 3.x, in compliance with the new map-based model code,
the -g parameter has been introduced to compute contacts for geo-positions generated by
BonnMotion.

Parameters for LinkDump:

-b <begin of time span > : Specifies begin of time span.

-d : Compute link durations (and save to file).

-e <end of time span > : Specifies end of time span.

-f <scenario name > : Specifies name of the scenario.

-g : Use GPS (geo) coordinates.

-i : Print inter contact times to console.

-j : Compute inter contact times (and save to file).

-t : Print start time of inter -contact times.

-r <transmission range > : Specifies transmission range.

-w : Print only links that go up and down after begin

and before end of time span.

9.4 The Statistics application

The “Statistics” application is used to analyze a given scenario. There are two modes of
operation: The default is to calculate “overall” statistics (averaged over the simulation time)
and the other mode is to calculate “progressive” statistics (values of metrics for certain points
in time).

In its default mode, the application creates a file with the suffix .stats containing the
following information:

[Page 23]

Documentation -24- Bonnmotion

• Metrics independent of transmission range:

1. The relative mobility is calculated according to [14].

2. The average node speed is the speed averaged over all nodes.

3. The average degree of temporal dependence is a measure for the dependence of a
node’s velocity on its velocity at some previous time (IMPORTANT framework
metric [5]).

• Metrics dependent of transmission range (sorted by row, one column per transmission
range):

1. Average degree of spatial dependence: How much are the nodes’ movements influ-
enced by each other (IMPORTANT framework metric [5])?

2. Average node degree: To how many of the other nodes is one node connected
(directly, i.e., over 1 hop)?

3. Average number of partitions: 1 means the network is connected at all times, values
larger than 1 indicate that this is not the case.

4. Partitioning degree: How likely is it that two randomly chosen nodes are not within
the same connected component at a randomly chosen point in time?

5. Average time to link break : Average time it takes for a link to break off. Only
links that go up after the simulation start and go down before the simulation end
are taken into account.

6. Standard deviation of time to link break (see above).

7. Link breaks: The total number of links that go up after the simulation start and
go down before the simulation end.

8. Average link duration: Similar to time to link break, but in this case all links are
counted (IMPORTANT framework metric [5]).

9. Total number of links.

10. Average relative speed (described in [14]) between all nodes in the network.

11. Average path availability : The value of path availability averaged over all node
pairs. Path availability is the fraction of time during which a path is available
between two nodes i and j (IMPORTANT framework metric [5]).

12. Average number of link changes: The number of link changes averaged over all
node pairs. Number of link changes for a pair of nodes i and j is the number
of times the link between them transitions from “down” to “up” (IMPORTANT
framework metric [5]).

Alternatively to the statistics which are averaged over the whole simulation time, the
devolution of certain characteristics can be calculated (progressive mode). See the command
line help and the following examples.

Usage examples:

$./bm Statistics -f scenario1 -r 50 ,75,100

[Page 24]

Bonnmotion -25- Documentation

This writes the averaged statistics to scenario1.stats for transmission ranges of 50, 75, and
100 meters.

$./bm Statistics -f scenario1 -r 75 -P

This creates a file scenario1.stats 75.part, which gives the number of partitions each time
it changes.

$./bm Statistics -f scenario1 -r 50 ,100 -N -M 10

This creates scenario1.stats 50.nodedeg and scenario1.stats 100.nodedeg that show
the devolution of the node degrees. Furthermore, the files scenario1.stats 50.mincut and
scenario1.stats 100.mincut show the minimal cut of the topology every 10 seconds. It is
reasonable to specify such a time span for computations that cost much CPU time.

10 Scenario visualisation

“Visplot” is a very simple application that writes those positions to a file where a mobile
changes its speed or direction. This file can simply be visualised using e.g. gnuplot.

11 Validation

After a code change it is hard to verify if the change affected the repeatability of past scenarios.
For this purpose this script has been developed. It is located in the folder validate.

The validate script is a two phase script: In the determination phase the script runs
BonnMotion with various parameters and saves hashes and used parameters of the given
BonnMotion output in a SQLite database. In the validation phase the script reads the saved
parameters and hashes from the database, runs the BonnMotion version to validate with the
parameters again, generates hashes of the new output and compares them with the saved
hashes.

11.1 Setup

To be able to run the script you have to adjust the values of the BonnMotion paths in the
config file: validate.cfg.

11.2 Usage

$./ validate.py

-m, --determine -model [-d, --delete] <filename/folder >

write hash values into database

[-d, --delete] : (optional) delete saved hash values of this model

from the database

<filename/folder > : filename of modeltest file , or folder with one or

more modeltest files

-M, --validate -model [modelname]

validate BonnMotion with hash values saved in database

[modelname] : (optional) name of the model to validate if no

model provided all saved models will be validated

-a, --determine -app [-d, --delete] <filename/folder >

[Page 25]

Documentation -26- Bonnmotion

write hash values into database

[-d, --delete] : (optional) delete saved hash values of this app

from the database

<filename/folder > : filename of apptest file , or folder with one or

more apptest files

-A, --validate -app [appname]

validate BonnMotion with hash values saved in database

[appname] : (optional) name of the app to validate if no

app provided all saved apps will be validated

11.3 Determination

In the determination phase the script expects a modified BonnMotion parameter file as com-
mand line input. In this file parameter values can be defined as constant values, vari-
able steps and sets. Variable steps have the format: {begin:end:step}. For instance
{1.0:2.0:0.5} would result in the parameters 1.0, 1.5 and 2.0. Sets have the format
{element1;element2;...;elementn}. Example for a model testparameter file:

model=RandomWaypoint

ignore=3200.0

randomSeed=1276176155501

x=200 .0

y=200 .0

duration ={100 .0:300 .0:100 .0}

nn={10;100;1000}

circular=false

dim=3

minspeed=1 .0

maxspeed=1 .5

maxpause=60 .0

Running the script with this parameter file it would run BonnMotion with these parameter
combinations:

duration nn

100.0 10

200.0 10

300.0 10

100.0 100

100.0 1000

The other parameters would be constant.

If you have to test several sets of parameters which have to be consistent (e.g. number
of nodes have to match groupsizes) than you can provide additional parameters with the
[testcase] keyword. The first parameters in the modeltest file are the default ones. Addi-
tional testcases only have to set the parameters which are different from the default ones.

Example (appended to the parameters above):

[testcase]

x=1000 .0

y=1000 .0

[Page 26]

Bonnmotion -27- Documentation

This would create a run with all parameter combinations from above and also with a
scenario-size of 1000x1000.

The hashes are saved in the specified database in a table named after the model.

Note: The parameter -d, --delete erases all saved hashes of the model specified before
saving the generated hashes, without further inquiry!

The string {$} is replaced with the current directory path. This can be used to test
models which need additional input files (for example RandomStreet)

11.4 Validation

When validating, the script catches parameters and hashes from the database, runs BonnMo-
tion with the parameters, computes hashes from the output and compares the saved hashes
with the new ones. If no table name is provided all saved models are validated, otherwise
the script expects a table name which exists in the database. After running, the script either
prints that the hashes are identical or it prints an error message with the parameters resulting
different hashes.

11.5 Determination of a BonnMotion app

For validating a BonnMotion app, the script needs a parameter file with four constant pa-
rameters. These parameters must be provided:

app the name of the app

paramsfile is the filename of a model parameter file or the path of a folder with several
modeltest files

extensions is a set of the suffixes the app creates

appparams the parameters of the app

Sample apptest:

app=TheONEFile

paramsfile=randomwaypoint.testparams

extensions ={one}

appparams=-l 2

The script runs BonnMotion with the specified testparams file (like with model determi-
nation) and then runs the app with the app-parameters over the output (in this case -l 2)
and saves hashes (with BonnMotion-parameters and app-parameters). The script expects the
app to accept a -f parameter to define the input file. The table name in which the hashes
will be saved is the appname.

If you need to test multiple parameter values or parameters combinations several test
cases can be defined. A test case can overwrite the extensions and appparams values.

Sample apptest with testcases:

app=LinkDump

paramsfile=modeltests -basic

extensions ={ict_50 .0;ld_50 .0}

appparams=-r 50 -d -j

[Page 27]

Documentation -28- Bonnmotion

[testcase]

extensions ={ict_100 .0;ld_100 .0 }

appparams=-r 100 -d -j

11.6 Validation of a BonnMotion app

Validation of a BonnMotion app is similar to model validation but you have to specify an app
name. All apps will be validated if no app name is provided.

12 Acknowledgments

The first versions of this software were designed and implemented by Michael Gerharz and
Christian de Waal. Further extensions have been designed and implemented by Nils Aschen-
bruck, Jan-Hendrik Bolte, Alexander Bothe, Tracy Camp (CSM), Michael Coughlin (CSM),
Raphael Ernst, Elmar Gerhards-Padilla, Christian Heiden, Tim Heinrich, Karina Meyer,
Aarti Munjal (CSM), Patrick Peschlow, Gary Scheid (CSM), Florian Schmitt, Matthias
Schwamborn, and Chris Walsh (CSM). Moreover, contributions to code and this documenta-
tion have been made by Juan G. Barros, Yue Cao, Elmano Ramalho Cavalcanti, Nuno Cruz,
and Martin Giachino.

The development of the first versions was supported in part by the German Federal Min-
istry of Education and Research (BMBF) as part of the IPonAir project.

Since 2008, BonnMotion is partially supported by CONET, the Cooperating Objects
Network of Excellence, funded by the European Commission under FP7 with contract number
FP7-2007-2-224053.

The project has also been partially supported by the National Science Foundation (under
CNS-0905513 and CNS-0848130). Any opinions, findings and conclusions, or recommen-
dations expressed in this material do not necessarily reflect those of the National Science
Foundation.

[Page 28]

Bonnmotion -29- Documentation

References

[1] N. Aschenbruck, R. Ernst, and P. Martini, “Indoor mobility modeling,” in Proceedings
of the IEEE Global Communication Conference Workshop on Mobile Computing and
Emerging Communication Networks MCECN, Miami, Florida, USA, 2010.

[2] N. Aschenbruck, E. Gerhards-Padilla, M. Gerharz, M. Frank, and P. Martini, “Mod-
elling Mobility in Disaster Area Scenarios,” Proc. 10th ACM-IEEE Int. Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), pp. 4–12,
2007.

[3] N. Aschenbruck and M. Schwamborn, “Synthetic map-based mobility traces for the per-
formance evaluation in opportunistic networks,” in Proceedings of the 2nd International
Workshop on Mobile Opportunistic Networking, MobiOpp 2010, Pisa, Italy, February
22-23, 2010. ACM, 2010, pp. 143–146.

[4] F. Bai and A. Helmy, “A survey of mobility models,” 2004, http://nile.usc.edu/∼helmy/
important/Modified-Chapter1-5-30-04.pdf.

[5] F. Bai, N. Sadagopan, and A. Helmy, “IMPORTANT: A framework to systematically
analyze the Impact of Mobility on Performance of RouTing protocols for Adhoc NeT-
works,” in Proc. of the IEEE Infocom, 2003, pp. 825–835.

[6] C. Bettstetter, “Mobility modeling in wireless networks: categorization, smooth move-
ment, and border effects,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 5, no. 3, pp. 55–66, 2001.

[7] C. Bettstetter and C. Wagner, “The Spatial Node Distribution of the Random Waypoint
Mobility Model,” in Proc. of the 1st German Workshop on Mobile Ad-Hoc Networks
(WMAN’02), 2002, pp. 41–58.

[8] H. Butler, C. Schmidt, D. Springmeyer, and J. Livni, “Spatial Reference,” 2013, http:
//spatialreference.org/.

[9] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network
Research,” Wireless Communication and Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, vol. 2, no. 5, pp. 483–
502, Sep. 2002.

[10] Universal Mobile Telecommunicatios System (UMTS) - Selection procedures for the
choice of radio transmission technologies of the UMTS, Umts 30.03 version 3.2.0, tr
101 112 ed., European Telecommunications Standards Institute (ETSI), 1998.

[11] GPX Developers, “GPX 1.1 Schema Documentation,” 2012, http://www.topografix.
com/GPX/1/1/.

[12] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A Group Mobility Model for Ad Hoc
Wireless Networks,” Proc. of the ACM Int. Workshop on Modelling and Simulation of
Wireless and Mobile Systems (MSWiM), pp. 53–60, 1999.

[Page 29]

http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf
http://nile.usc.edu/~helmy/important/Modified-Chapter1-5-30-04.pdf
http://spatialreference.org/
http://spatialreference.org/
http://www.topografix.com/GPX/1/1/
http://www.topografix.com/GPX/1/1/

Documentation -30- Bonnmotion

[13] S. P. Hoogendoorn and P. H. L. Bovy, “State-of-the-art of vehicular traffic flow mod-
elling,” Journal of Systems and Control Engineering - Special Issue on Road Traffic
Modelling and Control, vol. 215, no. 4, pp. 283–304, 2001.

[14] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark, “Scenario-
based Performance Analysis of Routing Protocols for Mobile Ad-hoc Networks,” Proc.
of the Mobicom, pp. 195–206, 1999.

[15] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evaluation,”
in Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
SIMUTools 2009, Rome, Italy, March 2-6, 2009. ICST, 2009, pp. 1–10.

[16] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: A mobility model for human
walks,” in Proc. of the 28th Int. Conference on Computer Communications (INFOCOM
’09), 2009, pp. 855–863.

[17] B. Liang and Z. J. Haas, “Predictive distance-based mobility management for PCS net-
works,” Proc. of the IEEE Infocom, pp. 1377–1384, 1999.

[18] A. Mei and J. Stefa, “SWIM: A simple model to generate small mobile worlds,” Proceed-
ings - IEEE INFOCOM, no. 215923, pp. 2106–2113, 2009.

[19] A. Mei, J. Stefa, and S. Kosta, “Swim: Small world in motion - a mobility model for
human movements,” 2014, http://swim.di.uniroma1.it/.

[20] A. Morton, “DMAP: UTM Grid Zones of the World,” 2013, http://www.dmap.co.uk/
utmworld.htm.

[21] A. Munjal, T. Camp, and W. C. Navidi, “Smooth: A simple way to model human
walks,” in Proceedings of the 14th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM), 2011.

[22] M. Musolesi and C. Mascolo, “Mobility models for systems evaluation,” State of the Art
on Middleware for Network Eccentric and Mobile Applications (MINEMA), 2008.

[23] W. Navidi and T. Camp, “Stationary distributions for the random waypoint mobility
model,” IEEE Transactions on Mobile Computing, vol. 3, no. 1, pp. 99–108, Jan-Feb
2004.

[24] W. Navidi, T. Camp, and N. Bauer, “Improving the Accuracy of Random Waypoint
Simulations through Steady-State Initialization,” in Proceedings of the 15th International
Conference on Modeling and Simulation, 2004, pp. 319–326.

[25] NCSU Networking Research Lab, “Human mobility models download,” 2011, http://
research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw.

[26] OGP Surveying and Positioning Committee, “EPSG Geodetic Parameter Registry,”
2013, http://www.epsg-registry.org/.

[27] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the levy-walk nature of human mo-
bility,” in Proceeding of the 27th Conference on Computer Communications (INFOCOM
2008), April 2008, pp. –.

[Page 30]

http://swim.di.uniroma1.it/
http://www.dmap.co.uk/utmworld.htm
http://www.dmap.co.uk/utmworld.htm
http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw
http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw
http://www.epsg-registry.org/

Bonnmotion -31- Documentation

[28] M. Schwamborn and N. Aschenbruck, “Introducing Geographic Restrictions to the SLAW
Human Mobility Model,” in Proc. of the 21st Int. Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS ’13), San
Francisco, CA, USA, 2013, pp. 264–272.

[29] ——, “On Modeling and Impact of Geographic Restrictions for Human Mobility in Op-
portunistic Networks,” in Accepted for the 23rd Int. Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS ’15), Atlanta,
GA, USA, 2015.

[30] TOILERS, “Smooth: A simple way to model human mobility,” 2012, http://toilers.
mines.edu/Public/Code/smooth.html.

[31] WISEBED Project, “Deliverable d4.1: First set of well-designed simulations, experiments
and possible benchmarks,” 2009, http://www.wisebed.eu/images/stories/deliverables/
d4.1.pdf.

[Page 31]

http://toilers.mines.edu/Public/Code/smooth.html
http://toilers.mines.edu/Public/Code/smooth.html
http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf
http://www.wisebed.eu/images/stories/deliverables/d4.1.pdf

	Legal notice
	Contact information
	Introduction
	Installation
	Installation on UNIX operating systems
	Installation on Microsoft Windows operating systems

	Running
	Scenario generation
	Boundless Simulation Area Model ("Boundless")
	Chain Model ("ChainScenario")
	Column Mobility Model ("Column")
	Disaster Area model ("DisasterArea")
	Gauss-Markov models
	The original Gauss-Markov model ("OriginalGaussMarkov")
	The Gauss-Markov model ("GaussMarkov")

	The Manhattan Grid model ("ManhattanGrid")
	Map-based Models
	General Usage
	Installation of Open Source Routing Machine
	Random Street ("RandomStreet")
	Map-based Self-similar Least Action Walk ("MSLAW")

	Nomadic Community Mobility Model ("Nomadic")
	Probabilistic Random Walk Model ("ProbRandomWalk")
	Pursue Mobility Model ("Pursue")
	Random Direction Model ("RandomDirection")
	Random Walk Model ("RandomWalk")
	The Random Waypoint model ("RandomWaypoint")
	The Reference Point Group Mobility model ("RPGM")
	Self-similar Least Action Walk ("SLAW")
	SMOOTH Model ("SMOOTH")
	Static scenarios ("Static")
	Static scenarios with drift ("StaticDrift")
	Steady-State Random Waypoint Model ("SteadyStateRandomWaypoint")
	Small World In Motion ("SWIM")
	Tactical Indoor Mobility Model ("TIMM")
	Truncated Lévy Walk ("TLW")

	Converting scenarios to other formats
	CSVFile
	Cut
	Glomosim / Qualnet
	IntervalFormat
	ns-2
	ns-3
	The ONE
	WiseML
	XML

	Importing other formats
	GPXImport

	Scenario analysis
	The Dwelltime application
	InRangePrinter
	The LinkDump application
	The Statistics application

	Scenario visualisation
	Validation
	Setup
	Usage
	Determination
	Validation
	Determination of a BonnMotion app
	Validation of a BonnMotion app

	Acknowledgments
	References

