
Tactical Traffic Engineering with
Segment Routing Midpoint Optimization

Alexander Brundiers◦, Timmy Schüller•◦, Nils Aschenbruck◦

◦Osnabrück University, Institute of Computer Science •Deutsche Telekom Technik GmbH
Osnabrück, Germany Münster, Germany

Email: {brundiers, schueller, aschenbruck}@uos.de Email: timmy.schueller@telekom.de

©IFIP, (2023). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for
redistribution. The definitive version was published in the Proceedings of the 2023 IFIP Networking Conference (IFIP Networking),
https://doi.org/10.23919/IFIPNetworking57963.2023.10186413.

Abstract—Tactical Traffic Engineering (TE) plays a crucial role
in the operation of modern backbone networks as it enables op-
erators to quickly react to failures or unforeseen traffic changes.
In this paper, we propose a new Segment Routing (SR)-based
optimization algorithm called MOLS. It is the first algorithm
that applies the recent concept of Midpoint Optimization (MO)
for SR to the use case of fast, tactical TE. In an extensive
evaluation, based on various real-world topologies, we show
that our algorithm performs virtually on par or better than
comparable state-of-the-art tactical TE approaches that rely on
conventional SR. However, especially for larger networks, the
number of SR policies required by our algorithm is substantially
lower. This not only reduces the introduced overhead but also
allows for faster deployment of the computed configurations since
less changes have to be applied to the network. Furthermore, we
show that MOLS is able to remove congestion in sub-second
fashion for multiple TE use cases. Lastly, MOLS also is the
first algorithm in literature to fully utilize the capabilities of MO
without any artificial limitations. This enables it to find similar or
even better solutions than the only other MO-capable algorithm
in literature in just a fraction of the time.

I. INTRODUCTION

Segment Routing (SR) [6] is a recent source-routing archi-
tecture that has been shown to offer great Traffic Engineering
(TE) capabilities. Its deployment is, therefore, pushed by many
operators and vendors and a lot of research is conducted
towards exploring the capabilities of SR for different TE use
cases (see [24] for an overview). One of these use cases is the
field of tactical TE. Contrary to strategic TE, which strives for
optimization in normal operation, tactical TE aims at offering
reasonably good solutions within short amounts of time to
allow operators to quickly react to failures or sudden traffic
changes [17]. There are SR-based algorithms that allow to
optimize a network within a couple minutes (e.g., [11]) or even
in sub-second fashion [8]. All these approaches, however, rely
on conventional SR that only utilizes SR policies as end-to-
end “tunnels” for individual demands, which often results in
unnecessarily high policy numbers (cf. [5]).

A recently studied innovation in the context of SR is
the concept of Midpoint Optimization (MO) [5]. Instead of
having to configure a dedicated SR policy for each demand
that has to be rerouted, MO allows for multiple demands to
be routed via a single policy. This can substantially reduce
the number of policies required to implement TE solutions
while still achieving optimization results that are on par with

conventional SR approaches. The exceptionally low policy
numbers that can be achieved when utilizing MO also render
it a promising candidate for tactical TE. The lower the number
of policies required for a solution, the easier and faster it
can be deployed in a network. However, current MO-capable
algorithms often require multiple hours to compute solutions
on larger instances, which renders them completely unsuitable
for tactical TE with its tight time constraints.

In this paper, we address this lack of suitable algorithms
and propose Midpoint Optimization Local Search (MOLS), the
first MO-capable SR algorithm that is able to optimize even
large networks within seconds instead of hours. In an extensive
evaluation featuring real-world network data, we show that
the solutions found by our algorithm require substantially less
policies than current, state-of-the-art tactical TE approaches
relying on conventional SR, while being of similar or even
better quality regarding the achievable Maximum Link Uti-
lization (MLU). Furthermore, we show that MOLS reliably
removes congestion in sub-second fashion in different use
cases, including link failure scenarios in the backbone of a
Tier-1 Internet Service Provider (ISP). Lastly, MOLS also is
the first algorithm in literature that fully utilizes the capabilities
of MO without any artificial limitations. This enables it to find
better solutions than the current state-of-the-art MO algorithm
for multiple instances in just a fraction of the time.

II. BACKGROUND

This section provides background information on important
aspects of this paper: Local Search (LS), Segment Routing
(SR), and the concept of Midpoint Optimization (MO) for SR.

A. Local Search

Local Search (LS) [1] is a popular heuristic concept in the
area of combinatorial optimization. It is based on the idea
of exploring slight alterations of the current solution in the
hope of finding an improvement from which the search will
be continued. This way, the solution space (or at least parts
of it) is iteratively explored until no improvements can be
found anymore or until a certain stop-criterion is met. The
allowed alterations of the current solution are called moves.
The set of solutions that can be obtained by applying a certain
move-type to a solution is called its respective neighborhood
and individual solutions are its neighbors. For example, in the
context of the well known Knapsack-Problem a solution could



be represented by the set of selected items and the insertion-
neighborhood could be defined as all those solutions that can
be obtained by inserting another item into the current solution.

An important aspect when designing LS algorithms is the
selection of an appropriate move-set and neighborhood. It
should be ensured that the solution space is connected by the
set of feasible moves. This means that, for each solution, there
should exist a sequence of moves that leads to an optimal
solution from there. However, the resulting neighborhood also
should not be too large because it still has to be efficiently
explorable. If it is not possible to find a sufficiently small
neighborhood that can be fully explored in reasonable time,
heuristic approaches can be applied. Those select a certain
subset of possible moves that tend to have a higher chance
of improving the solution. For example, in the context of TE,
when trying to select a traffic flow to be rerouted, it can be
helpful to put more emphasis on flows that put large amounts
of traffic on the currently highest utilized edge (cf. [8]).

A big problem of standard LS, which always chooses
the most improving move in each iteration, is that it often
gets stuck at local optima that can be far worse than the
global optimum. In order to escape these local optima and
to continue the search in other regions of the solution space
(diversification), a wide variety of approaches can be applied.
One of those is called Tabu Search [10]. Here, the idea is
to also accept non-improving moves under certain conditions
to escape local optima. However, in order to prevent same
or similar solutions to be explored multiple times, a list of
prohibited moves or solutions (the Tabu-List) is maintained.

B. Segment Routing

Segment Routing (SR) [6], is a recent source-routing ar-
chitecture that builds upon the idea of introducing certain
waypoints (called segments or labels) to a packet. The packet
is then routed to each of the interim destinations (one after the
other) via the Interior Gateway Protocol (IGP) shortest path
before being forwarded to its original destination. This allows
for the realization of virtually arbitrary forwarding paths in a
network, which renders SR a premier tool for TE.

SR labels are added to a packet via so called SR policies.
Those can be understood as rules configured on individual
nodes that determine the stack of labels to be applied to
packets steered into the respective policy [7]. There are various
types of labels/segments depending on the nature of the related
waypoint (c.f., [6]). However, in this work, we focus on the
use of only node-segments (referring to individual routers
in a network). In theory, arbitrarily many segments can be
applied to a packet, but in practice this number is often limited
upwards by hardware constraints or to reduce the additional
overhead resulting from long segment lists. This restricted
form of SR is then referred to as k-SR with k denoting the
maximum allowed number of segments per packet.

One of the great advantages of SR compared to other TE
techniques like Multiprotocol Label Switching (MPLS) [3]
with Resource Reservation Protocol (RSVP)-TE [2] is the sig-
nificantly lower overhead that is introduced into the network.

Contrary to RSVP-TE tunnels that have to be configured and
maintained on every associated node, SR policies are basically
stateless and only need to be configured at the head-end of
the policy. All other required information is encoded in the
respective label-stack that is applied to a packet. For a more
in-depth description of SR and related research see e.g., [24].

C. Midpoint Optimization for Segment Routing

In nearly all of the SR literature, SR policies are used only in
end-to-end fashion with a policy exclusively routing the traffic
demand originating at its respective start- and destined to its
respective endpoint. Other traffic transiting over the startpoint
while already in the SR domain is not steered into it. In a
carrier-grade ISP backbone, for example, this means that an
SR policy between nodes A and B will only route the traffic
that enters the network at node A (ingress) and that is set to
leave it again at node B (egress).

An innovation in the context of SR1 that breaks with this
convention is the concept of Midpoint Optimization (MO),
recently studied in [5]. It is based on the idea of allowing for
multiple demands to be routed via a single policy. This can be
realized in multiple different ways depending on the selected
way of steering traffic onto a policy. The IGP Shortcut MO
variation studied in [5] only steers a packet onto a policy if it
comes across the policy startpoint and the endpoint lies on the
IGP shortest path from the policy startpoint to the destination
of the packet. Additionally, packets that already are “inside”
of a policy will not be steered into other ones encountered
along the way. The latter constraint efficiently prevents the
accidental configuration of loops.

It is shown in [5], that MO can significantly reduce
the number of policies required to implement TE solutions,
while still achieving optimization results of similar quality as
conventional SR approaches. If the number of segments is
limited, MO even has the potential to achieve better solutions
than conventional SR by “mimicking” higher segment-number
paths via a concatenation of multiple MO policies.

III. RELATED WORK

In the context of time-constrained TE with SR, there are
two prevalent state-of-the-art approaches. The first one is the
Declarative and Expressive Forwarding Optimizer (DEFO)
[11]. It is an optimization architecture designed for the use
in large carrier-grade networks. It allows operators to specify
various goals or cost-functions that the network should be
optimized for. Those optimization problems are then solved
by a heuristic optimization algorithm based on Constraint
Programming (CP) [21]. While the CP approach itself could
theoretically provide truly optimal solutions, it often requires
a lot of time to do so (especially on large networks). For this
reason, DEFO does not solve the CP problem to optimality
but uses an LS-based heuristic to explore the search space
more efficiently. This allows DEFO to adhere to the timing

1While applying this concept to SR is new, there are similar approaches
for TE based on MPLS tunnels with RSVP-TE (c.f., [4], [19], [23]).



constraints of tactical re-optimization by providing reasonably
good solutions within minutes or seconds instead of hours.

The second algorithm is Segment Routing Local Search
(SRLS) [8]. It aims at true sub-second optimization to allow
for an immediate, automated re-optimization of the network in
the case of failures or unexpected traffic changes. The required,
exceptionally low computation times are achieved by utilizing
a heuristic approach based on LS that iteratively inserts new
SR policies into the network to bring down the MLU. This
enables SRLS to remove congestion in a sub-second fashion
for many networks, being significantly faster than DEFO and
Linear Program (LP)-based approaches.

Both of the above approaches focus solely on the use
of conventional end-to-end SR and, hence, often require a
substantial number of policies to implement their solutions
(cf. Section VI-A). MO offers the potential to significantly
reduce the number of required policies. However, there is no
scientific publication on the use of MO for tactical TE yet.
In fact, since it is a very recent innovation in the context of
SR, the only scientific publication dealing with MO for SR
is [5] published in 2022. It formally describes the concept
of MO for SR and discusses its potential advantages as well
as disadvantages compared to conventional end-to-end SR.
Apart from these theoretical foundations, the authors also
propose an LP-based optimization algorithm called Shortcut
2SR (SC2SR) that utilizes MO for the objective of MLU
minimization. It is shown that SC2SR is able to achieve
optimization results that are on par with current end-to-end SR
algorithms for many (real-world) topologies. Simultaneously,
the number of required SR policies is substantially reduced,
lowering the resulting overhead and configuration effort.

A downside of the SC2SR algorithm is the fact that it only
solves a restricted version of the MO optimization problem
in which certain practically feasible policy configurations
are artificially prohibited in order to allow for an efficient
LP formulation (cf. [5, Sections V-B and V-C]). There are
scenarios in which these artificial restrictions result in the
algorithm not being able to find the optimal solution but an
arbitrarily worse one instead. Contrary to this, our MOLS
algorithm does not suffer from such limitations and is the first
one in literature to fully utilize the capabilities of MO.

Another downside of the SC2SR algorithm are its high
demands regarding memory and computation time. According
to the authors, “it can take multiple hours and [...] a couple
hundred gigabytes of RAM to find the optimal solution” [5] for
larger networks. While this might be acceptable for strategic
TE only carried out on a weekly or monthly basis, tactical TE
requires significantly lower computations times. As a result,
the SC2SR algorithm is basically unsuitable for this use case
and, hence, there is a need for MO algorithms that can find
good solutions within a significantly shorter amount of time.

IV. OPTIMIZATION ALGORITHM

This section first introduces the operational requirements for
an algorithm to be used in a tactical TE scenario, followed by
a detailed description of our proposed MOLS algorithm.

A. Design Goals and Operational Requirements

The main use case of our algorithm is fast, tactical TE
with a focus on MLU minimization. This means that its
main objective is to find reasonably good solutions to the
MLU minimization problem within limited amounts of time.
SRLS [8] puts great emphasis on sub-second optimization with
the reasoning of supporting a fast, fully automated network
reconfiguration in case of failures or sudden traffic changes.
However, our talks with network experts and operators from
a Tier-1 ISP have shown that, while such a fully automated
solution is considered as a potential ultimate goal in the future,
there currently is a lot more interest in recommender-systems.
In those systems, the computation of required reconfigurations
can be automatically triggered as soon as failures or drastic
traffic changes are detected, but the computed solutions are
not automatically rolled out into the network. Instead, the
new configuration should be presented to a human expert
that validates and checks it for potential errors or unwanted
side-effects (cf. e.g., [16, col. 9, ll. 38ff.]). The reason for
this is that, while congestion on some links can have a
negative impact on the overall network performance and user
experience, an accidental misconfiguration carried out by an
automated system can have much more detrimental effects.
Therefore, our algorithm is targeted for the use in such a
recommender-system. For this, it has to find reasonably good
solutions in short time, but is not bound as strictly to the
sub-second limit anymore. Instead, while faster computation
is preferred, optimization times of up to two minutes are still
acceptable according to operator experts.

B. Implementation

We base our algorithm on the IGP Shortcut MO variation
(cf. Section II-C) because this is the implementation used
in literature [5] where it was shown to perform really well
regarding TE use cases. Furthermore, this is supposed to
be the MO variation that is implemented by many routing
manufacturers (cf. e.g., [14, pp. 641ff.]). However, information
on this topic is rather sparse and sometimes a bit ambiguous.

Since LS has already proven to be able to provide ex-
ceptional results in the context of conventional SR (cf. [8]
and [11]), we also base our algorithm on this concept. In
the following, we further describe the relevant aspects of our
proposed Midpoint Optimization Local Search (MOLS) algo-
rithm, like the chosen neighborhood, its exploration strategy
and how we carry out an efficient move evaluation.

Neighborhood: Our neighborhood consists of two types of
moves: insertion and removal of an MO-capable 2SR policy
between two nodes s and t with intermediate segment m.
These are sufficient to connect the solution space since every
possible solution can be obtained from any starting solution
by carrying out a sequence of insertion and removal moves.

Neighborhood Exploration: To explore the above neigh-
borhood more efficiently, we decided to follow an approach
similar to the one used in [8] to focus our exploration on
candidates that tend to have a higher chance of resulting
in an improvement of the MLU. This is done by selecting



a demand d that puts load on the currently most utilized
edge emlu and evaluating all the possible moves that would
result in (parts of) this demand being detoured away from
emlu. The selection of a demand is done randomly with the
probability P (d) of selecting demand d being based on the
traffic load(d, emlu) that this demand puts on emlu. The exact
formula for computing this probability is:

P (d) =

(
load(d, emlu)

Load(emlu)

)α
(1)

where Load(emlu) denotes the total load of edge e and α is
a parameter that can be used to adjust how much emphasis is
put on selecting demands that induce a high load on emlu.

During experiments with this approach, we observed that
it is still quite likely that the selected demand is actually
relatively far from being the “optimal” one and that the
actually best possible move was not in the evaluated set of
moves. To increase the chances of finding the best (or at least
a really good) next move, we do not only select a single
demand and evaluate its related moves, but instead select a
fixed number of demands and evaluate their respective move
sets. Out of all the evaluated moves, we then select the one
that reduces the MLU in the network the most.

Tabu List: There are scenarios for which there is no singular
move that results in an immediate improvement of the MLU.
An example for this would be a situation in which multiple
edges actually have a load equal to the MLU. Especially if
these edges lie in different parts of the network, chances are
high that there is no single move that can reduce all their
loads at once. Hence, the overall MLU will always stay the
same, irrespective of the selected move. When only accepting
moves that improve the current MLU, the algorithm will
get stuck in such local optima. To overcome such issues,
our algorithm is allowed to accept non-improving and even
MLU-increasing moves if no improving moves can be found.
The only requirement for accepting such moves is that they
reduce the link utilization of at least one of the edges with a
utilization equal to the current MLU. This ensures that there is
at least some sort of “progress”, even when accepting a non-
improving move. A problem arising from allowing to accept
non-improving moves while also focusing on improving the
MLU whenever possible, is the fact that the optimization can
get stuck in an infinite loop. A move that actually worsens
the MLU is chosen, which then gets immediately reverted in
the next iteration step since reverting it obviously results in
an MLU improvement. After this, the same non-improving
move as before might be selected which is then reverted again.
This can continue ad infinitum causing the optimization to be
stuck. To prevent this, our algorithm utilizes a Tabu-List which
keeps track of the previously carried out non-improving moves
and prohibits their respective inverse moves. The list will be
cleared if a new overall best solution is found.

Diversification: In order to allow for even further diversi-
fication of the explored solution space, we implemented reset
and revert mechanics inspired by those used in [8]. After
applying a certain number of non-improving moves (nreset )

that do not lead to an improvement of our overall best solution,
we perturbate the search by carrying out a reset move that
removes a randomly selected policy from the current solution.
If this does not lead to an improvement of the globally best
found solution after a certain number of iterations (nrevert ),
the algorithm reverts back to the best solution found so far
and continues from there. The respective values for nreset
and nrevert can be adapted to fine-tune the algorithm to
a users needs. Additionally, we also incorporated a restart
functionality that completely restarts the optimization if there
is no further improvement after a certain number of reset and
revert operations. In this case, we consider the optimization
irreparably stuck and start anew.

Move Evaluation: One of the most important aspects of an
LS algorithm is an efficient move evaluation. In the context
of conventional SR as it is used by SRLS, this is rather
straightforward since the insertion or removal of a policy does
only impact the forwarding path of a single demand. When
using MO, however, a policy can route multiple demands.
Hence, inserting or removing a single policy can alter the
path of a multitude of demands in the network. As a result,
the complexity of evaluating a move additionally depends on
the number of demands that are influenced by the respective
policy. In the worst case, this number can lie in O(N2) with
N denoting the number of nodes in the network.

To compute the MLU resulting from a move, the traffic of
each impacted demand first needs to be removed from its re-
spective “old” path and then added to the new one. Fortunately,
it is not required to compute the full path from scratch but only
the sub-path between the starting point of the inserted/removed
policy and the respective demands destination, since a policy
does not impact the routing decisions “in front” of it.

Furthermore, some of the additional complexity can be
reduced due to the following observation: All traffic flows
that visit the same node and share a common destination will
follow the same path from there on, irrespective of the original
demand source. This allows us to group these demands into a
single “merged” one for which we then only have to compute
the new forwarding path once, instead of having to carry out
computations for each of the respective individual demands.
This procedure is able to reduce the number of potential path
recomputations per move evaluation from O(N2) to O(N).

Stop Criteria: We implemented two possible stop criteria
for our algorithm. The first is a simple timelimit that aborts
optimization after the specified time and returns the so far best
solution. The second allows for the specification of a target
MLU for which the optimization will end if it is reached.

V. EVALUATION DATA

The evaluation of our MOLS algorithm is conducted on
three different sets of data. The first one consists of data
from the publicly available Repetita dataset [9]. It features
many different real-world network topologies (many of them
taken from the Topology Zoo [15]) with artificially generated2

2Matrices were generated based on the gravity model described in [22].



Table I: Repetita data distinguished by number of nodes.

Category # of Nodes N # of Instances

Small N < 20 49
Medium 20 ≤ N < 40 88
Large 40 ≤ N 72

traffic matrices for each of the topologies. Since the topologies
in this dataset vary heavily in size (ranging from 4 to 197
nodes), we subdivided the instances into three categories
(small, medium and large) based on their number of nodes. The
same was done in [8] and we follow the same categorization
for better comparability. The respective node limits as well as
the number of instances in each category are listed in Table I.
We exclude instances for which the optimal MLU is already
achieved by Shortest Path Routing (SPR) as this renders them
uninteresting for our evaluation scenarios.

The second dataset used for our evaluation is based on data
collected during the peak-hours in the backbone network of
a globally operating Tier-1 ISP. It consists of 19 topology
snapshots resembling different expansion states of the network
between 2017 and 2021 and the corresponding measured
traffic matrices. Depending on the expansion state, the network
features around 100 to 200 nodes and 600 to 1100 edges.

For our third dataset, we follow an approach proposed in
[5] to create (arguably) harder semi-artificial instances from
topology and traffic data that spans multiple expansion states
of the same network across a longer time period. The idea is
based on the observation that network operators continuously
expand their networks to deal with growing traffic. If we now
map more recent traffic data onto the topologies from previous
expansion states of the network, more traffic is forced through
a network with lower capacity, which should result in harder
instances for TE. By using this method, we created another
ten instances for our algorithm to be evaluated on. In the
following, those are referred to as the ISP backmapped dataset.

VI. EVALUATION RESULTS

This section presents the results of our evaluations of the
MOLS algorithm. All evaluations are carried out on a 64-
core 3.3GHz machine with around 500GB of RAM using.
For algorithms that rely on LPs (e.g., SC2SR), CPLEX [13]
is used as LP-solver. If not stated otherwise, we use a timelimit
of up to two minutes for all algorithms, since this is what ISP
experts specified as an acceptable upper timelimit for tactical
TE (cf. Section IV-A). Experiments with algorithms with non-
deterministic components (e.g., SRLS, DEFO, or MOLS) are
repeated five times and the following results show the averages
across these five runs. All MOLS results are obtained with the
following parameter settings (c.f., Section IV-B): nreset = 20,
nrevert = 10, and α = 1.5. Those were selected based on
preliminary experiments which we cannot cover here.

A. Comparison Against Tactical Traffic Engineering Ap-
proaches using Conventional Segment Routing

This part of our evaluation focuses on assessing the perfor-
mance of our MOLS algorithm in terms of tactical TE under

Small Medium Large
D

EFO
SR

LS

M
O

LS

D
EFO

SR
LS

M
O

LS

D
EFO

SR
LS

M
O

LS

Dataset & Algorithm

1

2

3

4

5

6

7

M
L
U
a
lg

M
L
U
M
C
F

1.0

1.1

1.2

1.3

1.4

Figure 1: Distribution of MLUs achieved by different tactical
TE algorithms on the Repetita dataset.

limited time constraints, especially in comparison to other
state-of-the-art approaches that utilize conventional, end-to-
end SR. For this, we compare it against DEFO and SRLS with
respect to the achievable MLU and the number of required
policies. The latter two algorithms both rely on conventional
SR. The only MO-capable optimization algorithm in literature
is SC2SR [5]. However, since it is LP-based, it scales very
poorly with network size resulting in computation times of
multiple hours for larger instances (cf. Section III). Hence, it
is (by design) not suited for fast, time-constrained optimization
and will, thus, not be taken into consideration here.

1) Maximum Link Utilization: Besides directly comparing
the MLUs achieved by the different algorithms, we also
compare them to Multicommodity Flow (MCF) [18, Ch. 4.4]
for reference. MCF is used to obtain the theoretically best
achievable MLU. However, MCF solutions are generally not
deployable in practice due to many real-world constraints and
restrictions being completely ignored in the standard MCF
formulation (e.g., the infeasibility of splitting traffic flows in
arbitrary fractions). As a result, MCF should be interpreted as
a theoretical lower bound for a realistically achievable MLU.

The respective results for our Repetita dataset are depicted
in Figure 1. The MLU values are given in relation to the
theoretically optimal MCF MLU. In this context, a quotient-
value of 1.0 denotes an optimal solution. The dashed red line
denotes the overutilization threshold (MLU > 1.0). It can be
seen that DEFO and SRLS achieve quite good results for the
small and medium sized instances. However, there often is still
room for improvement. MOLS, however, finds optimal solu-
tions in nearly all cases. For the large instances, DEFO gets
outperformed by both MOLS and SRLS, with the latter one
also achieving slightly better MLUs than MOLS. However, the
latter differences are marginally small (often < 1%). In fact,
such subtle differences are probably not even noticeable in a
practical deployment. Traffic, while mostly being quite stable
and predictable, is still subject to small ongoing variations
which cover up such marginal MLU differences.

Results for the ISP instances (cf. Figure 2) are quite
similar, with DEFO getting outperformed by both SRLS and
MOLS in terms of MLU and the latter two again achieving



A B C D E F G H I J K L M N O P Q R S

Instance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

M
L
U
a
lg

M
L
U
M
C
F

DEFO

SRLS

MOLS

(a) Original ISP.

A B C D E F G H I J

Instance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

M
L
U
a
lg

M
L
U
M
C
F

DEFO

SRLS

MOLS

(b) Backmapped ISP.

Figure 2: MLUs achieved by different tactical TE algorithms
on the instances from the ISP datasets.

rather similar solution quality with some slight advantages
for MOLS, especially on the backmapped instances. Overall,
in terms of MLU, MOLS is able to consistently outperform
DEFO and is on par and sometimes even better than SRLS. It
should also be noted that while MOLS is run with a maximum
timelimit of two minutes, this limit is seldomly used to its
full extent. Often, near-optimal results are already achieved
within a couple of seconds or less, especially for the Tier-1
ISP backbone instances (cf. Figure 8 in the Appendix).

2) Number of Policies: The number of policies required
by DEFO, SRLS, and MOLS to achieve the above results
on the Repetita dataset are depicted in Figure 3. For the
small instances, numbers are relatively similar across all three
approaches, but already for the medium sized instances the
number of policies required by MOLS is lower than those of
DEFO and SRLS while also achieving better MLUs (cf. Figure
1). For the large instances, the benefits of MOLS become even
more apparent. Here, MOLS requires just around 60 policies
on average, rarely installing more than 100. In contrast, SRLS
often needs a couple hundred policies even ranging up to
multiple thousands while achieving similar or just marginally
better MLUs. On average, MOLS configures around 76% less
policies than SRLS on the large instances. DEFO generally
requires fewer policies than SRLS but still substantially more
than MOLS, while also achieving generally worse MLUs.

For reasons of space, we cannot include a figure depicting
the policy numbers required in our ISP datasets. However, the
results are very similar to those obtained on the Repetita data.
MOLS finds virtually optimal solutions with only a few tens
of policies. In contrast, DEFO and SRLS require hundreds or
even thousands of policies to achieve solutions of similar or,
in the case of DEFO, often even worse quality.

All in all, we can conclude that especially for larger
instances, MOLS tends to substantially outperform DEFO
as well as SRLS regarding the number of policies while
achieving comparable or even better MLUs. This reduction
of the number of policies is especially useful in the context
of tactical TE. It not only reduces the overhead introduced
into the network but also allows for a faster and less complex
reconfiguration due to significantly less changes having to be

Small Medium Large
D

EFO
SR

LS

M
O

LS

D
EFO

SR
LS

M
O

LS

D
EFO

SR
LS

M
O

LS

Dataset & Algorithm

0

2000

4000

6000

8000

N
u

m
b

er
of

P
ol

ic
ie

s

100

101

102

103

104

Figure 3: Distribution of the number of policies required per
instance by the different algorithms for the Repetita dataset.
The smaller inset plot shows the same data but with a
logarithmic scale for better readability.

applied. In this context, having to configure multiple thousands
of policies, as it is sometimes required by DEFO and SRLS,
might even come close to being actually impractical to do.

B. Congestion Removal

While finding truly optimal solutions could theoretically
be defined as the ultimate TE goal, a much more important
objective in the context of tactical TE is to ensure proper
operability of the network. In case of sudden failures or traffic
changes that result in an overutilization of some parts of
the network, performance can be significantly deteriorated. In
such scenarios, it is more important to quickly find a new
configuration that removes congestion in the network than
actually finding a truly optimal solution. Therefore, we also
evaluate MOLS on its ability to remove congestion in different
scenarios and the time required to do so.

Traffic Changes: First, we take a look at unforeseen
traffic changes. Sometimes the behavior or characteristics of
the traffic change in such a substantial manner that previous TE
solutions are not applicable anymore. In those scenarios, we
quickly need to find a new TE configuration to ensure proper
operability of the network. Since such a change in traffic
characteristics is basically nothing else than having to optimize
the network for a new traffic matrix, the performance of our
MOLS algorithm in these scenarios can be evaluated simply
by measuring the time it takes to bring the MLU for a given
network and traffic matrix below the overutilization threshold.
We do this for all those instances of our Repetita dataset that
have an SPR MLU of more than 1.0. The distributions of the
required optimization times are depicted on the left of Figure
4. The lower blue line denotes the one-second threshold, while
the upper red line indicates our maximum timelimit of two
minutes. Every instance that could not be brought below the
overutilization threshold within this time is placed on the red
line. It can be seen that MOLS is able to remove congestion
in a sub-second fashion for virtually all of the small and
medium sized Repetita instances, and even though there are
a few more outliers above the 1-second threshold, sub-second



Repetita ISP
small medium large backmapped link failures

Dataset

10−2

100

102
O

p
ti

m
za

ti
o
n

T
im

e
[s

]

Figure 4: Time taken by MOLS to remove congestion in
different networks and scenarios.

congestion removal is also achieved for most of the larger
instances. Overall, MOLS is able to remove congestion in a
sub-second fashion for 169 out of the 190 considered Repetita
instances, corresponding to around 89%. When given up to two
minutes, this number increases to around 97%. This supersedes
the results of DEFO and SRLS which are only able to remove
congestion for around 86% and 93% of instances, respectively.

Traffic Surges: Our second evaluation scenario focuses
on a special type of traffic change, namely so called traffic
surges. Here, the amount of traffic that passes through the
network increases drastically within a short time-frame. This
can, for example, be caused by large sport events or the
release of a highly anticipated game or TV series (cf. [20])
and can result in the need for a reconfiguration to deal with
this additional burden. Evaluating the ability of our algorithm
to deal with such traffic surges is a bit more complicated
since obtaining any data on recorded real-world traffic surges
proofs to be difficult. Instead, we decided to simulate it via
the traffic backmapping approach described in Section V. By
mapping newer traffic matrices onto older expansion states of
the ISP network, we basically simulate an unforeseen increase
in traffic, as we are forcing more traffic though the network
than expected during its design. The required optimization
times to remove congestion are also depicted in Figure 4. It
can be seen that MOLS is able to reliably remove congestion
within less than a second for 100% of the considered scenarios.

Link Failures: Another important use case for TE heuris-
tics is fast congestion removal in failure scenarios. One of
the most common types of failures in ISP networks are link
failures in which a single link becomes unusable, for example
because of hardware malfunction or misconfiguration. Those
tend to occur on a daily basis [12] and, hence, need to be
dealt with frequently during day-to-day operation. We examine
the ability of MOLS to remove congestion for link failure
scenarios in our Tier-1 ISP dataset. For each instance, we
individually fail each link and then optimize the resulting
scenario in order to remove (potentially occurring) overutiliza-
tion. Again, MOLS is able to remove congestion for 100%
of the considered scenarios and, for all but one, requires
substantially less than a second to do so (see Figure 4).
However, it has to be noted that, while we look at around 600
to 750 individual failure scenarios per instance, the number of
scenarios in which the failure actually results in overutilization

A B C D E F G H I J K L M N O P Q R S

Instance

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M
L
U
a
lg

M
L
U
M
C
F

SPR

SC2SR

MOLS

(a) Original ISP.

A B C D E F G H I J

Instance

1

2

3

4

5

6

M
L
U
a
lg

M
L
U
M
C
F

SPR

SC2SR

MOLS

(b) Backmapped ISP.

Figure 5: MLUs achieved by different optimization approaches
on the instances from the ISP datasets.

is substantially lower (around 0 to 12 scenarios per instance).
The reason for this low number is that ISP networks are
normally build with a lot of redundancy to deal with such
failures. Hence, a single link failure rarely brings them to
their limits. If, however, such a rare case eventually occurs,
it is important to be able to quickly react and resolve it. As
shown, this can be done with our MOLS algorithm.

Unfortunately, we are not able to carry out a similar, in-
depth analysis of the respective optimization times of DEFO
and SRLS. The publicly available implementations of these
algorithms do not feature the functionality to specify a target
MLU for which the algorithm terminates if it is reached. How-
ever, a similar analysis for DEFO and SRLS on the Repetita
data was already carried out in the original SRLS paper [8] on
a machine that is comparable to the one used by us. Hence, we
expect the results presented there to be applicable here, at least
in terms of a rough overall comparison. Given the results in
[8, Fig. 10], it seems like the SRLS algorithm is slightly faster
than MOLS. This is expectable as the candidate evaluation of
our algorithm is significantly more complex due to the nature
of the optimization problem (cf. Section IV-B). However, the
overall ability of achieving sub-second congestion removal
seems to be on par between those two algorithms.

All in all, this evaluation shows that MOLS fulfills and even
supersedes the requirements for tactical TE. While it would
be sufficient to remove congestion in as much as two minutes,
MOLS achieves this goal in sub-second fashion for nearly
all of our evaluations, including traffic changes and failure
scenarios in the backbone of one the worlds largest ISPs.

C. Comparison Against other MO-capable Algorithms

Lastly, we want to compare the performance of our MOLS
algorithm to SC2SR [5], even though both were developed
for inherently different use cases (fast reoptimization vs. long-
lasting optimization in normal operation). The reason for this
is that SC2SR is the only other MO-capable algorithm in
literature and it actually only solves a restricted version of
the MO optimization problem (cf. Section III), which can
negatively impact its solution quality. MOLS does not suffer
from such limitations and the previous evaluations have shown
that it tends to find (near) optimal solutions for most scenarios.



Small Medium Large

SPR

SC2S
R

M
O

LS
SPR

SC2S
R

M
O

LS
SPR

SC2S
R

M
O

LS

Dataset & Algorithm

2

4

6

8

10
M
L
U
a
lg

M
L
U
M
C
F

1.00

1.05

1.10

1.15

1.20

Figure 6: Distribution of the MLUs achieved by different
optimization approaches on the Repetita dataset.

Hence, it might be able to actually find better solutions than
SC2SR while using just a fraction of the computation time. In
the following, MOLS was again run with a timelimit of two
minutes while SC2SR was given unlimited time. For larger
instances, this resulted in running times in the magnitude of
multiple hours. This difference in computation time should be
kept in mind when interpreting the following results.

1) Maximum Link Utilization: The MLU results achieved
on the ISP datasets are depicted in Figure 5. For each instance,
it shows the MLUs obtained by SC2SR and MOLS relative
to the theoretically optimal MLU computed with MCF. This
time, we also included the MLU achieved by SPR as an addi-
tional reference value that basically represents the current state
of routing in many networks that we want to improve upon
with our TE approaches. It can be seen that for the original
as well as the backmapped ISP instances, MOLS performs
on par with SC2SR finding virtually optimal solutions for
nearly every instance. In the rare cases in which MOLS does
not reach the MCF solution (e.g., instance M of the original
dataset), it is still very close to this optimum and SC2SR does
not find a better solution either. For one instance (G in Fig.
5b), MOLS is even able to undercut the MLU achieved by
SC2SR, finding the optimal solution while the latter fails to
do so. This shows that the fact that SC2SR does not utilize
MO to its full potential (cf. Section III), can truly be a limiting
factor, not only in theory but also in practice. Since MOLS
does not suffer from these limitations but fully utilizes the
capabilities of MO, it is able to find better solutions.

This becomes even more apparent when looking at the
results of the Repetita instances (Figure 6). The number of in-
stances is too large to display individual results. Hence, MLU
distributions are shown instead. The dashed red line denotes
the overutilization threshold (MLU > 1.0). On the small and
medium sized instances, SC2SR achieves good results but still
gets outperformed by MOLS. For the large instances, SC2SR
finds slightly better solutions but the differences are marginally
small and would (most likely) not be noticeable in a practical
deployment for which traffic is never perfectly stable.

2) Number of Policies: The number of policies required
by the two algorithms to obtain the previously shown results

Repetita
(small)

Repetita
(medium)

Repetita
(large)

ISP
(original)

ISP
(backmapped)

SC2T
LE

M
O

LS

SC2T
LE

M
O

LS

SC2T
LE

M
O

LS

SC2T
LE

M
O

LS

SC2T
LE

M
O

LS

Dataset & Algorithm

100

101

102

N
u

m
b

er
o
f

P
ol

ic
ie

s

Figure 7: Log-scale distribution of the number of policies
required by SC2TLE and MOLS on our different datasets.

are depicted in Figure 7. It can be seen that MOLS generally
computes solutions that use at least a few more policies
than SC2SR when the latter is used in combination with its
extension dedicated to policy minimization (SC2SR Tunnel
Limit Extension (SC2TLE)). A partial explanation for this is
that, as we have shown in the previous section, MOLS tends
to find solutions with a lower MLU than SC2SR for quite a
few of the Repetita instances. By the nature of the problem,
better solutions virtually always require more policies. This
assumption is supported by the fact that for the ISP instances,
where the achieved MLUs were basically equal between the
two algorithms, the differences in policies tend to be smaller.
Furthermore, when interpreting these numbers, it has to be
remembered that the SC2TLE extension explicitly minimizes
the number of policies in a dedicated second optimization step.
Hence, it always finds the guaranteed minimum number of
policies required to obtain the respective MLU. However, this
comes at the cost of additional computation time. For large
instances this can lie in the magnitude of hours, further adding
to the already high computation times of SC2SR. In contrast,
our heuristic computes its solutions mostly within seconds.
Even though it might not achieve as low policy numbers as
SC2TLE, there is only a reasonably small difference between
the two, especially when interpreted in relation to the policy
numbers required by conventional, end-to-end SR. Those
approaches often require hundreds if not thousands of policies
(cf. [5]) while both of the MO algorithms compute solutions
with far less than 100 policies for most instances.

All in all, this evaluation has shown that, in terms of MLU,
MOLS is able to achieve optimization results of similar or
even better quality than the state-of-the-art SC2SR algorithm
while only requiring slightly more policies. These are quite
impressive results in the context of SC2SR being designed as
a strategic TE algorithm that often requires multiple hours of
computation time in order to find near-optimal solutions, while
MOLS finds solutions in just a small fraction of this time.

VII. CONCLUSION

MO is a recent innovation in the context of SR that can dras-
tically reduce the number of SR policies required to implement



TE solutions. This renders it a promising candidate for tactical
TE since a lower number of policies allows for a faster and less
complex network (re-)configuration. In this paper, we studied
the applicability of MO for this use case. For this, we proposed
MOLS, the first MO-capable optimization algorithm that is
able to compute near-optimal solutions within very small
amounts of time. In an extensive evaluation featuring real
network data from a Tier-1 ISP, we showed that MOLS is able
to achieve optimization results that are on par or even better
than current state-of-the-art tactical TE algorithms that rely
on conventional SR. We further demonstrated that MOLS is
able to consistently remove congestion in a sub-second fashion
for most of our evaluation scenarios, including link failures
in the backbone network of a large Tier-1 ISP. The most
important benefit of MOLS, however, lies in the exceptionally
low number of SR policies required to implement its solutions.
While conventional SR approaches, such as DEFO or SRLS,
often require hundreds if not thousands of policies for larger
instances, MOLS achieves similar or even better solution
quality with only a fraction of these policies, often requiring
significantly less than 100. Furthermore, MOLS is also the
first algorithm in literature to fully utilize the capabilities of
MO without any artificial limitations. This enables it to find
solutions of similar or better quality than current state-of-the-
art MO algorithms, even though the computation times of the
latter can reach multiple hours, while MOLS finds its solutions
mostly within seconds. This reduction in computation time is
an important step towards a practical use of MO in large ISP
networks which can benefit the most from its ability to reduce
policy numbers. In fact, an efficient exact algorithm for the
MO optimization problem has not been found yet. This renders
the observation that heuristic algorithms can be used to find
near-optimal solutions within seconds even more important.

As future work, we plan to incorporate further service-
related constraints (e.g., delay) into our algorithm. Further-
more, while we have shown that it can deal with link-failures
in sub-second fashion, it would be interesting to see how
MOLS performs for more complex failure scenarios like
Shared Risk Link Group or node failures.

APPENDIX

Repetita ISP
small medium large original backmapped

Dataset

10−1

100

101

102

O
p

ti
m

iz
at

io
n

T
im

e
[s

]

Figure 8: Log-scale distribution of the optimization time
required by MOLS to get within one percentage-point of the
best found MLUs depicted in Figures 1 and 2.

REFERENCES

[1] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., 1997.

[2] D. O. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP Tunnels,” RFC 3209, 2001.

[3] D. O. Awduche and B. Jabbari, “Internet Traffic Engineering Using
Multi-Protocol Label Switching (MPLS),” Computer Networks, vol. 40,
pp. 111–129, 2002.

[4] W. Ben-Ameur, N. Michel, B. Liau, J. Geffard, and E. Gourdin, “Routing
Strategies for IP-Networks,” Telektronikk Magazine, vol. 97, pp. 145–
158, 2001.

[5] A. Brundiers, T. Schüller, and N. Aschenbruck, “Midpoint Optimization
for Segment Routing,” in Proc. of the IEEE Int. Conf. on Computer
Communications (INFOCOM), 2022, pp. 1579–1588.

[6] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in Proc. of the IEEE Global
Communications Conf. (GLOBECOM), 2015.

[7] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture ,” RFC 8402, 2018.

[8] S. Gay, R. Hartert, and S. Vissicchio, “Expect the Unexpected: Sub-
Second Optimization for Segment Routing,” in Proc. of the IEEE Int.
Conf. on Computer Communications (INFOCOM), 2017.

[9] S. Gay, P. Schaus, and S. Vissicchio, “REPETITA: Repeatable Experi-
ments for Performance Evaluation of Traffic-Engineering Algorithms,”
ArXiv e-prints, 2017.

[10] F. Glover and M. Laguna, Tabu Search. Springer US, 1998.
[11] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,

T. Telkamp, and P. Francois, “A Declarative and Expressive Approach
to Control Forwarding Paths in Carrier-Grade Networks,” in Proc. of
the ACM Conf. on Special Interest Group on Data Communication
(SIGCOMM), 2015, pp. 15–28.

[12] G. Iannaccone, C.-n. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of Link Failures in an IP Backbone,” in Proc. of the ACM
SIGCOMM Workshop on Internet Measurment, 2002, p. 237–242.

[13] IBM, “IBM ILOG CPLEX Optimization Studio 20.1.0,” https://www.
ibm.com/docs/en/icos/20.1.0, 2020.

[14] Juniper Networks, “Junos OS IS-IS User Guide,” Tech. Rep.,
2021. [Online]. Available: https://www.juniper.net/documentation/us/en/
software/junos/is-is/is-is.pdf

[15] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[16] T. LaBerge, C. Filsfils, and P. Francois, “Tactical Traffic Engineering
Based on Segment Routing Policies ,” US Patent US10 742 556B2, 2020.
[Online]. Available: https://patents.google.com/patent/US10742556B2

[17] T. Li, C. Barth, A. Smith, and B. Wen, “Tactical Traffic Engineering
(TTE),” Internet Draft draft-li-rtgwg-tte-00, 2023.

[18] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols,
and Architectures. Morgan Kaufmann Publishers Inc., 2017.

[19] E. Mulyana and U. Killat, “Optimization of IP Networks in Various
Hybrid IGP/MPLS Routing Schemes,” in Proc. of the GI/ITG Conf. on
Measuring and Evaluation of Computer and Communication Systems
(MMB) together with 3rd Polish-German Teletraffic Symposium (PGTS),
2004, pp. 295–304.

[20] Paul Stobart. “2022 Internet roundup: World Cup, Call of Duty
and Peaky Blinders spike online traffic”. Zen Internet. Accessed
on: 01-20-2023. [Online]. Available: https://www.zen.co.uk/blog/posts/
zen-blog/2023/01/03/2022-internet-roundup/

[21] F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., 2006.

[22] M. Roughan, “Simplifying the Synthesis of Internet Traffic Matrices,”
SIGCOMM Comput. Commun. Rev., vol. 35, pp. 93–96, 2005.

[23] F. Skivée, S. Balon, and G. Leduc, “A Scalable Heuristic for Hybrid
IGP/MPLS Traffic Engineering - Case Study on an Operational Net-
work,” in Proc. of the IEEE Int. Conf. on Networks (ICON), 2006, pp.
1–6.

[24] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment Routing: A Com-
prehensive Survey of Research Activities, Standardization Efforts, and
Implementation Results,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 1, pp. 182–221, 2021.


