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Abstract—In this paper, we discuss the concept of Midpoint
Optimization (MO) for Segment Routing (SR). It is based on the
idea of integrating SR policies into the Interior Gateway Protocol
(IGP) to allow various demands to be steered into them. We
discuss the benefits of this approach when compared to end-to-
end SR and potential challenges that might arise in deployment.
We further develop an LP-based optimization algorithm to assess
the Traffic Engineering capabilities of MO for SR. Based on
traffic and topology data from a Tier-1 Internet Service Provider
as well as other, publicly available data, we show that this
algorithm is able to achieve virtually optimal results with regards
to the maximum link utilization, that are on par with state-of-
the-art end-to-end SR approaches. However, our MO approach
requires substantially less policies to do so. For some instances
the achieved reduction ranges up to more than 99%.

I. INTRODUCTION

To cope with the continuous growth of Internet traffic,
many Internet Service Providers (ISPs) deploy some form
of Traffic Engineering (TE) to utilize existing infrastructure
more efficiently. A recent approach to TE that received a lot
of attention is based on Segment Routing (SR). SR allows
for precise steering of a packets path through a network by
applying waypoints, so called segments, to a packet, that have
to be visited in a specific order before heading for the original
destination. Segments are applied to a packet via so called SR
policies that are configured on a per-node basis. They can be
interpreted as some form of rules that specify which segments
have to be added to a packet that is steered into them [14].

Various research (e.g., [5], [21], [30]) has shown that SR is
able to achieve (near) optimal results with regards to several
TE objectives. However, to the best of our knowledge, all these
publications focus solely on what we refer to as “end-to-end”
SR. This means that each SR policy is dedicated to only route
the traffic between just one pair of nodes, namely its respective
start- and endpoint. Other demands, that do not originate/end
at these nodes, but just visit them in transit will not be steered
into the policy. This allows for precise traffic control on an
individual, per-demand basis but also has its downsides.

In this paper, we show that using end-to-end SR can result
in a high number of policies, especially in larger networks
like ISP backbones. Even though SR introduces much lower
overhead than, for example, Multiprotocol Label Switching
(MPLS) tunnels, network operators still prefer solutions with
low policy numbers for reasons of clarity, manageability, and
robustness. We also demonstrate that current SR TE algorithms
can heavily underestimate the number of policies if solutions
are computed based on preprocessed topology information.

To tackle these problems, we pursue the idea of steering
multiple different demands into a single policy by integrating
them into the Interior Gateway Protocol (IGP). Contrary to
current end-to-end SR approaches, this allows for a single
policy to route multiple demands at once. Therefore, it has
the potential to substantially reduce the number of policies
that need to be configured in a network. We refer to this idea
as Midpoint Optimization (MO) because traffic is detoured
(or “optimized”) at arbitrary midpoints along its path through
the network, instead of its ingress node. Furthermore, we
propose a Linear Program (LP)-based optimization algorithm
that utilizes the MO concept. Based on the example of the
backbone network of a globally operating Tier-1 ISP as well
as other, publicly available network data, we show that it is
able to achieve virtually optimal results with regards to the
Maximum Link Utilization (MLU), that are on par with state-
of-the-art end-to-end SR algorithms. However, our approach
requires substantially (sometimes up to 99%) less SR policies,
which is a major improvement over the current state-of-the-art.

We further believe that MO is of great interest for SR
research and TE in general. This is backed up by the fact
that several large routing vendors are working on proprietary
approaches that could be classified as some form of MO.

II. BACKGROUND

Before further discussing the concept of MO, we first need
to provide some more information on three relevant topics:
The integration of MPLS TE tunnels into the IGP, the SR
architecture, and its applications for TE. In the following, the
term demand refers to the amount of traffic that is exchanged
between two nodes in the context of an Ingress-Egress (IE)
traffic matrix as described in [33].

A. Integration of MPLS Tunnels into IGP Routing

Before SR was developed, MPLS Label Switched Paths
(LSPs) were often used for TE purposes. Besides their use
as simple end-to-end tunnels, there are some approaches to
incorporate them into the IGP routing (cf. [4], [25], [28]) and,
thus, make them usable by more than one demand. A rather
simplistic approach, often referred to as Basic IGP Shortcut,
is to steer a packet into a tunnel starting at the current node
if the tunnel endpoint corresponds to the packets destination.
This way, a tunnel between nodes X and Y can route every
packet that is addressed to Y and passes over X . A more
sophisticated version of this strategy is IGP Shortcut. Here,
packets are steered into a tunnel if the respective destination



is a downstream router of the tunnel endpoint [31]. In general,
the term downstream denotes a router lying “behind” the
tunnel endpoint with respect to IGP Shortest Path Routing
(SPR), but exact definitions can vary [4]. The definition that
we follow in this paper is this one (cf. [4]): A packet is only
steered into a tunnel if the tunnel endpoint lies on the shortest
path from the tunnel startpoint to the packets destination.
The rationale behind choosing his exact definition is further
explained in Section V-A.

Basic IGP Shortcut and IGP Shortcut are both only locally
significant. The existence of a tunnel is only known at its
respective startpoint. As a result, it can only influence the
routing decisions at this node. However, there also exist
globally significant approaches in which tunnels are advertised
to the IGP just like normal links [4]. This enables the IGP and,
hence, all nodes to consider these tunnels in their shortest path
computations. While this can be beneficial to some extent, it
also introduces problems that are similar to the limitations of
metric optimization TE approaches (cf. e.g., [16], [35]).

B. Segment Routing

Segment Routing (SR) [13] is based on the source routing
paradigm and commonly implemented using either MPLS
or a dedicated IPv6 extension. In general, different types of
segments can be used depending on the intended action (e.g.,
routing to a specific node, using an adjacency, or applying
a service). However, in this paper, we only consider node
segments. Each segment is identified by a specific Segment
Identifier (SID). Combining multiple SIDs into a so called
segment list that has to be processed in the given order allows
for a precise control of a packet’s path through the network.
The respective sub-paths between individual segments are
determined by the IGP. Segment lists are defined within SR
policies that can be configured on each SR-capable node. Such
a policy can basically be interpreted as a rule specifying which
segments to apply to a packet that is steered into it [14].

Another network tunneling technique that provides even
better traffic steering capabilities is Resource Reservation
Protocol (RSVP)-TE [3] in combination with MPLS. However,
this comes at the cost of significant signaling overhead because
an RSVP-TE tunnel has to be set-up and maintained on every
associated node. This has negative impact on the scalability
of this approach. In contrast, the information required for SR
is encoded in the packet itself. Therefore, an SR policy just
needs to be configured on the respective ingress node but not
along the actual path, resulting in a significant reduction of
the introduced control-plane overhead. However, there is some
(data-plane) overhead resulting from the segment list that is
appended to a packet (see e.g., [1] or [34]).

C. Segment Routing-based Traffic Engineering

SR-based TE is a topic that recently received a lot of
attention. There are several publications that deal with its
applications for various use-cases and objectives (cf. [34]) but
a large portion focuses on the minimization of the MLU. This
objective will also be the main focus of this paper.

min θ (1)

s.t.
∑
k

xkij = 1 ∀ij (2)∑
ij

tij
∑
k

gkij(e )x
k
ij ≤ θ c(e) ∀e (3)

xkij ≥ 0 ∀ijk (4)

Problem 1: 2SR formulation (inspired by [5]).

One of the first publications regarding SR TE is [5]. It
proposes an LP-based optimization algorithm called 2SR and
demonstrates that two segments are often sufficient to achieve
near-optimal results. The respective LP formulation is depicted
in Problem 1. The objective is to minimize the MLU denoted
by θ. The variables xkij indicate the percentage share of the
demand tij between nodes i and j, that is routed over the in-
termediate segment k. Equation (2) ensures that each demand
is satisfied. Equation (3), together with the objective function,
minimizes the MLU. For every edge e, gkij(e) indicates the
load that is put on e if a uniform demand is routed from i to
j over the intermediate segment k. These values are constants
and can be efficiently precomputed. All in all, the left side of
the constraint denotes the traffic that is put on e by the SR
configuration represented by the xkij . This is then limited to the
edges capacity c(e) scaled by θ. By minimizing this scaling
factor, a SR configuration with minimal MLU is computed.

The 2SR algorithm of [5] was extended in [29] to consider
additional real-world requirements that are necessary to allow
for an effective deployment of SR in practice. One of those
requirements is the minimization of the number of SR policies
required to implement a TE solution. Due to the overhead
induced by the added segment lists (cf. Section II-B) and for
the general sake of clarity, maintainability, and robustness [29]
network operators often aim to deploy SR configurations with
as few policies as possible. To address this issue, the Tunnel
Limit Extension (TLE) concept was proposed that can be used
as a follow up optimization step to an MLU optimization. It
pursues the objective of minimizing the number of policies
while not surpassing the optimal MLU of the previous opti-
mization by more than a predefined margin. In the context of
2SR, the resulting algorithm is called 2TLE.

III. RELATED WORK

As mentioned in Section II-A, there already are approaches
to incorporate MPLS tunnels into the IGP routing. This can
basically be interpreted as MO for MPLS. Ben-Ameur et al.
[4] propose an offline TE methodology for computing MPLS
tunnel configurations when utilizing IGP Shortcut. In [32], a
simulated annealing heuristic using Basic IGP Shortcut is pre-
sented which is able to achieve near-optimal MLU with only
a rather small number of tunnels. In [25], multiple heuristics
for computing MPLS tunnel configurations for various hybrid
IGP/MPLS routing schemes, such as IGP Shortcut and Basic
IGP Shortcut, are proposed. In an exemplary evaluation they



come to the conclusion that IGP Shortcut tends to perform
best with regards to MLU minimization.

In contrast to the above approaches that all rely on standard
MPLS tunnels, we implement MO with SR policies. MPLS
tunnels can follow virtually arbitrary paths through the net-
work, while SR is limited to concatenations of shortest paths
when only using node segments. As a result, the traffic steering
capabilities of SR are more restricted (especially if the number
of segments is limited). However, SR offers significantly better
scalability.

The general possibility of steering multiple different de-
mands into a single SR policy is already briefly mentioned
in some Internet-drafts (e.g., [11], [15]) and in [12, Ch. 5, Ch.
11] it is discussed from a technical perspective. Furthermore,
multiple vendors of routing equipment (e.g., Cisco [8] and
Juniper [22]) offer support for integrating SR policies into
the IGP. However, the publicly available information on this
topic is rather sparse. It mostly consists of brief notes of the
new MO features in the respective user guides or product
documentations. Information on how MO is implemented in
detail or the MO optimization algorithm in Cisco’s commercial
WAN Automation Engine (WAE) [8] are not provided.

To the best of our knowledge, there are no scientific
publications that explicitly deal with MO or a similar concept
for SR and examine its use for TE purposes.

IV. MIDPOINT OPTIMIZATION

In this section, we formally introduce and discuss the
concept of MO for SR and explain what benefits it can offer
compared to current end-to-end SR approaches.

A. Issues of End-to-End SR

While end-to-end SR enables a very precise, per-demand
traffic control, there are scenarios in which it causes a high
number of policies. For example, assume a highly utilized link
that is traversed by a large number of demands of more or less
equal size. To (sufficiently) reduce its load, a large subset of
these traversing demands needs to be detoured. When using
end-to-end SR, a dedicated SR policy has to be configured for
each demand that needs to be redirected. Furthermore, there
are scenarios in which the network structure requires a lot
of policies that follow virtually the same path through the
network and only differ on the first or last few hops. While
there is no alternative when using end-to-end SR, configuring
similar policies for large sets of demands is not very efficient.

These might sound like theoretic edge-cases but such sce-
narios can also be found in practice, especially in larger
ISP backbone networks. The reason for this is the specific
topology structure of these networks that often follows certain
design patterns. The network core consists of high-capacity
and high-speed but lower connectivity routers, accompanied
by hierarchical, high-connectivity node structures at the edges
of the network, which aggregate the traffic (cf. [2] or [10, Ch.
2.3]). As a result, ISP backbones often feature so called Edge
Points of Presence (PoPs). They consist of a set of edge routers
that are redundantly connected to two or more core routers

which, in turn, connect the PoP to the rest of the network.
To redirect the traffic that enters the network at a specific
PoP onto a predefined TE path, individual policies need to be
installed for many of these edge routers when using end-to-end
SR. Often, a large portion of these policies follow basically
the same path through the network. In larger ISP backbones,
there can be more than 100 edge routers per PoP, resulting in
large numbers of policies needing to be configured.

Another variant of this problem arises from the type of
data that is often used for TE research. Calculations for
large topologies, like ISP backbones, are rarely carried out
on the original topology due to scalability issues. Especially
approaches that try to solve for optimality (e.g., LP-based
ones) scale rather poorly with network size. For this reason, the
data used for optimization purposes often undergoes a com-
pression or virtualization process. Those utilize the fact that
Inter-PoP routing in the network core is of most interest for
TE while intra-PoP routing is of lesser relevance. Therefore,
the edge-routers at a PoP are often aggregated into a single
virtual node (see e.g., [7] or [29]), which can significantly
reduce the network size. In the ISP backbone considered later
in this paper, for example, a similar preprocessing reduces the
network size from over 3000 nodes to less than 200.

Publicly available datasets (e.g., Repetita [18] or the Topol-
ogy Zoo [23]) that are used for TE research, often feature
network data that is processed in similar fashion. Especially
information on larger networks, like ISP backbones, is often
only available on a PoP-level. While the use of this data for
theoretic evaluations of TE algorithms is reasonable, it can
result in a significant underestimation of the number of policies
that are required to transfer solutions into practice. This is
illustrated by the example in Figure 1. If TE solutions are
computed on the virtualized topology at the top, the blue policy
is considered as just one. However, its start- and endpoint
are virtualized nodes that correspond to multiple edge-routers
in practice. Hence, this one “virtual” policy corresponds to
multiple real policies that have to be configured, one for each
node-pair. In this example, with just four edge-routers per PoP,
this results in a total of 16 policies instead of just one (see
Figure 1b). In practice, however, the number of edge-nodes
can be much higher with more than 100 nodes per PoP. In the
worst case, this can result in multiple thousands of policies
needing to be configured (see Section VII-B).

To the best of our knowledge, this problem has not been
addressed in literature so far. Hence, current SR TE algorithms
do not offer support for assessing the true number of policies
when using virtualized data. Therefore, we propose an adap-
tion for the 2TLE algorithm, that allows for a more accurate
assessment of the required number of policies (Section VI-A).

B. The Concept of Midpoint Optimization

As seen in the previous section, relying solely on end-to-end
SR policies that are bound to route just a single demand can
result in a high number of policies. To deal with this issue, we
suggest the use of MO for SR. MO itself is less of a concrete
approach and more of a general idea that can be implemented
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Figure 1: Policy multiplication example.

in many different ways. Overall, the idea of MO for SR can be
summed up as integrating SR policies into the IGP to enable
steering various demands into them. This allows for a single
policy to route multiple demands which, offers the potential to
significantly reduce the number of required policies, especially
in scenarios like the ones described in Section IV-A.

C. Challenges of Midpoint Optimization

In the following, we take a look at problems and challenges
that might arise when implementing MO.

1) Loss of Routing Expressiveness: One of the biggest
advantages of SR is the detailed per-flow traffic control it
offers. In theory, the routing path of each demand can be
individually optimized with a dedicated policy, often enabling
near perfect routing. By stepping away from this “demand-
boundedness”, the explicit, per-flow traffic control is lost
and, hence, also some of the general routing expressiveness.
This carries the risk of deteriorating achievable optimization
results when deploying MO. However, MO might also be
able to improve solution quality when it comes to practical
implementations of SR. In current state-of-the-art SR TE
algorithms (e.g., [17] or [29]) the number of segments is often
limited to two or three. This is either done due to practical
constraints or optimization-related reasons. While it has been
shown multiple times that, in practice, three or even just two
segments are often sufficient to obtain virtually optimal results,
this is not always guaranteed. There are scenarios for which
higher segment numbers are required. For end-to-end SR, this
can result in infeasibly high computation times or resource
demands of the respective optimization algorithms. It might
even be impossible to sufficiently increase the segment number
due to the respective Maximum Segment Depth (MSD) limit.
MO, however, can benefit from the fact that it is able to (at
least partially) mimic higher segment paths via a concatenation
of multiple policies with fewer segments.

2) Routing Loops: When configuring a network, operators
need to make sure there are no routing loops since those
can significantly deteriorate performance. For end-to-end SR,
infinite loops are virtually no issue and can be easily prevented.
When deploying MO, however, scenarios can occur in which

a policy that might be beneficial for one demand closes a loop
for another. Hence, routing loops are a serious issue that has to
be considered and dealt with. Adding dedicated loop-checks
to optimization algorithms is probably not sufficient as long as
they only consider the current network state. Any link or router
failure can potentially alter the forwarding paths of packets
inside and outside of policies. Such a change might result
in a previously loop-free configuration to now contain a loop.
Thus, solutions do not only need to be checked to be loop-free
for the current network state, but also for any possible failure
scenario. This, however, is probably not feasible as the number
of possible failure scenarios grows exponentially with network
size. Therefore, it is desirable to develop MO implementations
which implicitly guarantee to never create loops.

3) Policy Nesting: For standard end-to-end SR, a demand
follows a policy from the ingress to the egress node. It is
technically not possible that it is affected by another policy
along its path. This changes for MO. Here, traffic that al-
ready follows a policy might reach a node at which another
applicable policy is configured. If that is the case, the traffic
will be also routed through this policy. In theory, this policy
nesting can occur an arbitrary number of times. This might
not seem problematic at first glance. However, in practice,
the maximum number of segments that can be applied to a
packet is limited by the MSD of the used routing hardware.
For end-to-end SR, this limitation is practically irrelevant since
virtually optimal results can often be achieved with a very low
number of segments (cf. [5]). However, this does not hold
true for MO in the presence of policy nesting. The number of
segments added by each policy varies depending on the exact
MO implementation, but is always at least one. As a result, the
MSD represents an upper limit for the feasible policy nesting
depth that must not be exceeded. This could theoretically be
ensured by explicitly checking the maximum nesting depth
of computed solution. However, similar to loop-checks, this
would also need to be ensured for every possible failure
scenario. A more practical approach is to simply prohibit
policy nesting. This can, for example, be done with so called
Strict Labels [22, p. 639ff.] [26] [27]. This is a special type
of label that guarantees that a packet is routed to the interim-
destination referenced by the respective label strictly via the
shortest path. Other policies or deviations will be ignored.

V. IMPLEMENTATION

In this section, we propose an LP-based SR TE optimization
algorithm that utilizes the MO concept.

A. Selecting an MO Implementation

There are various possibilities to integrate TE tunnels (or
policies) into the IGP. To not exceed the scope of this paper,
we focus on just one of them for now. Based on discussions
with experts from a Tier-1 ISP, we decided to follow an
implementation similar to the IGP Shortcut approach for
MPLS tunnels as it is defined in [4]. A packet will be steered
into a policy if the policy endpoint lies on the IGP shortest
path from the policy startpoint to the destination of the packet.



A crucial advantage of this approach is the fact that it
makes it impossible to configure policy-induced loops if policy
nesting is prohibited. With policy nesting enabled, there are
scenarios in which a packet gets trapped indefinitely by nesting
deeper and deeper between two policies. However, if policy
nesting is prohibited, traffic entering a policy is guaranteed to
also leave it again. Additionally, since packets are only steered
into a policy if the policy endpoint lies on the shortest path
towards their destination, they will always be closer to their
destination after exiting a policy. The same holds true for SPR.
Consequently, since the original distance to the destination is
finite, the packet will reach it in a finite number of steps.1

Furthermore, IGP Shortcut strikes a good balance between
other approaches like Basic IGP Shortcut or the advertisement
of policies as IGP links. A policy can still be used by multiple
demands with varying sources and destinations. And since it is
only locally significant (cf. Section II-A), it can only influence
traffic flows traversing the start-node of the policy. It will not
draw additional traffic from nearby paths. In addition to that,
a similar approach was found to perform best with regards to
the integration of MPLS tunnels into the IGP [25].

B. Computational Challenges

Common SR TE LP formulations that aim to optimize MLU
require information on how link utilizations change when
adding or removing a policy. When using end-to-end SR, these
values can be precomputed in a reasonable amount of time
because it is perfectly clear which demand is routed through
which policy, namely the one the policy is bound to.

This, however, changes when deploying MO. Now, policies
can start and end on arbitrary nodes in the network and are
no longer bound to a specific demand. As a result, various
demands can be routed through a single policy. Furthermore,
packets might be routed through multiple policies on their way
to their destination. This introduces some kind of dependencies
between policies (or at least their related link utilizations).
Installing or removing a policy can impact the routing of
various demands and, hence, alter the set of demands that
is routed through other policies. For example, a policy might
be configured that (normally) qualifies for routing a specific
demand. However, if this demand’s traffic never reaches the
policies entry point due to other policies deviating it from its
original path, traffic will not be routed through the former
policy. As a result, the link utilizations induced by a specific
policy cannot be computed without knowledge on what other
policies are (and will be) installed in the network. However,
this information is what we want to obtain from the optimiza-
tion in the first place. Hence, it is not available at optimization
time. This renders an (efficient) LP formulation (like, for
example, 2TLE for end-to-end SR) virtually impossible. Note

1While this approach prevents policy-induced routing loops, it still allows
for structures referred to as weak-loops [6]. While those can still result in
traffic visiting nodes multiple times, packets are not trapped infinitely in these
loops but still reach their destination. Hence, those weak-loops are far less
detrimental than standard routing loops. In fact, it was shown in [6] that they
can even offer actual benefits with regards to certain TE objectives (e.g., MLU
or policy number minimization).

that basic end-to-end SR TE without any additional constraints
is already NP-hard [19]. Introducing MO with its tunnel
dependencies makes the optimization problem even harder.

Similar observations are made in [25] with regards to an
IGP Shortcut approach for MPLS tunnels. There, a heuristic
approach is chosen instead. The same holds true for other
publications regarding the integration of MPLS tunnels into
the IGP (cf. Section III). All utilize some form of heuristic.

C. Algorithmic Idea

The LP-based algorithm proposed in this paper, strictly
speaking, also needs to be classified as a heuristic but it follows
a quite different approach. Instead of utilizing meta-heuristics
like simulated annealing or genetic algorithms, we optimally
solve a (slightly) more restricted problem that does not suffer
from the previously mentioned issue. The general idea is to
limit the explored solution space to those solutions that do
not incorporate policies that influence each other. For this,
we add a constraint to our LP that prohibits the installation of
policies that influence the amount of traffic that passes through
already installed ones. By doing so, we circumvent the above
mentioned issues regarding policy dependencies and make an
efficient precomputation of resulting link loads feasible.

The general idea for computing the set of influencing
policies for a specific policy p starting at node pstart and
ending at node pend is rather straight forward. For every
other configurable policy x we compute the amount of traffic
reaching pstart from every demand that is eligible for being
steered into p according to the IGP Shortcut rules. If this traffic
changes when x is installed, then x is an influencing policy
for p. It is important to not take traffic into account while it
is inside of a policy. Since policy nesting is prohibited, traffic
that already is inside of a policy is not eligible to be steered
into another one. Hence, the overall traffic that reaches pstart
might be the same, but if portions of this traffic already are
inside of a policy, they will not be steered into it anymore. As
a result, the traffic passing through this policy and, hence, the
resulting link utilizations will change. A useful property that
can be exploited for a faster computation is the fact that the
set of influencing policies only depends on the policy start-
and endpoints due to the prohibition of policy nesting.

D. SC2SR Optimization Model

Since link loads can now be precomputed in reasonable
time, this enables the formulation of an LP (see Problem 2).
We refer to it as Shortcut 2SR (SC2SR) because it is based on
IGP Shortcut and utilizes policies with up to two segments.
The objective still is the minimization of the MLU θ. However,
when compared to the 2SR formulation (Problem 1), com-
pletely different types of variables are used since policies are
not bound to specific demands anymore. The binary decision
variables xlkm indicate whether a policy from node k over
intermediate node l to m is installed. Similarly, the variables
ykm indicate whether there is any policy installed between
the nodes k and m, regardless of the respective intermediate



min θ (5)

s.t.
∑
l

xlkm = ykm ∀km (6)

ykm + yij ≤ 1
∀km
∀ij ∈ Ikm

(7)

spr(e) +
∑
ij

tij
∑
klm

diff klm
ij (e)xlkm ≤ θ c(e) ∀e (8)

xlkm ∈ {0, 1} ∀klm (9)
ykm ∈ {0, 1} ∀km (10)

Problem 2: SC2SR formulation.

min θ (11)

s.t.
∑
k

xkij = Zij ∀ij (12)

∑
ij

tij
Zij

∑
k

gkij(e )x
k
ij ≤ θ c(e) ∀e (13)

xkij ∈ N0 ∀ijk (14)

Problem 3: Router-Level 2SR formulation.

segment2. The first constraint (Equation 6) connects the xlkm to
the corresponding ykm variable, while also limiting the number
of policies that can be installed between any pair of nodes
to at most one. With Equation 7, we ensure that if a policy
between two nodes is set, none of its influencing policies
Ikm is installed as well. Finally, Equation 8 together with the
objective function is responsible for minimizing the MLU. Its
general idea is similar to Equation 3 of Problem 1. For each
edge, we compute the amount of traffic that results from the
current policy configuration and ensure that it does not exceed
θ times the respective capacity. In this context, spr(e) indicates
the traffic load that is put on edge e when standard SPR is used
and no policies are deployed. The diff klm

ij (e) values indicate
the difference in the share of the demand from i to j that is
put on edge e in the case of SPR and when a policy from k
over l to m is installed. For example, if 70% of the demand
from i to j would be routed over edge e if a policy is installed
between nodes k and m with intermediate segment l, but in the
SPR case (without this policy) it would only be 30%, then the
diff klm

ij value would be 0.4 (or 70%− 30% = 40%). If there
is no difference between SPR and the use of the respective
policy then the diff klm

ij value is zero.
The LP as presented in Problem 2 does not consider

any limitations regarding the configuration of policies on or
towards specific nodes. For input data where each node just
corresponds to exactly one router in practice this is fine.
However, if we deal with virtualized topologies (cf. Section
IV-A) in which (virtual) nodes correspond to many routers in
practice, using these nodes as start- or endpoints or interme-
diate segments should be avoided. Otherwise, we run into the
same policy multiplication problem as depicted in Figure 1.
This can be done either explicitly via a dedicated constraint
that fixes the corresponding xlkm to zero, or implicitly by only
setting up variables for non-virtual nodes. We implemented the
second option because it reduces the number of variables and,
hence, the overall problem size and computation times.

To allow for an effective minimization of the number
of deployed policies, we developed an LP extension called

2Technically, the LP could also be formulated without the ykm variables
using only xl

km. However, utilizing the former allows for a smaller LP and,
hence, a faster solving, at least with regards to the CPLEX solver used here.

SC2TLE. It is inspired by the TLE concept proposed in [29].
The general idea is to first compute the optimal MLU and
then minimize the number of policies required to obtain it
in a second, follow-up optimization step. The algorithm also
allows for the specification of a maximum percentage MLU
deterioration that is acceptable to further reduce the number
of policies. This value is specified by the trade-off coefficient
λ. The structure of the SC2TLE LP is similar to Problem
2, apart from two adaptions. First, the objective is changed
from MLU to policy number minimization. This is done by
replacing Equation 5 with the following one.

min
∑
km

ykm (15)

Second, the following constraint is added to the LP to pro-
vide an upper limit for the MLU deterioration of the newly
computed solution.

θ ≤ λθ′ (16)

It ensures that the MLU θ of the newly computed SC2TLE
solution does not surpass the optimal MLU θ′ of the preceding
SC2SR optimization by more than the user-defined trade-off
coefficient λ. If the MLU is not allowed to worsen at all, a
trade-off coefficient of 0% (λ = 1.0) can be used.

VI. EVALUATION SETUP

This section introduces the algorithms and datasets used
for the following evaluation. Computations are done on a
computer with two AMD EPYC 7452 CPUs, 512GB of RAM
and 64-bit Ubuntu 20.04.1. LPs are solved using CPLEX [20].

A. Algorithms

To assess the quality of SC2SR and SC2TLE, we use
different algorithms depending on the examined objective. The
first algorithm used for assessing the quality of the achieved
MLUs is SPR. It is used to reflect the current state of routing
that we want to improve on with our TE approaches. The
second algorithm is Multicommodity Flow (MCF) [24, Ch.
4.4] which we use to compute a lower bound for the achievable
MLU. To compute the MLU achievable with end-to-end SR
we use the 2SR algorithm (Problem 1).



To assess the minimal number of policies required by
end-to-end SR it would be optimal to compute solutions on
unvirtualized data. However, as mentioned in Section IV-A,
this is often not feasible for larger networks for reasons
of scalability. Another approach would be to simply add a
weighting-factor to each of the policies in the virtualized solu-
tion that corresponds to the actual number of policies required
to implement it in practice. For example, the blue policy in
the virtualized solution in Figure 1 would get a weight of
16, as it actually requires 16 end-to-end polices in practice.
Such an approach would provide information on the actual
number of policies required to implement 2TLE solutions that
were computed on virtualized data. However, it (most likely)
does not provide information on the actually minimal number
of policies that could be achieved if optimization would be
carried out on the original, unvirtualized data. The reason
for this is that it either installs a policy for all edge-routers
resembled by a virtual node or for none of them. In practice,
however, it might be optimal to only install the policy for some
of the edge routers (or their respective demands).

To get a better approximation of the minimal number of
required policies, we developed an adaption of the 2TLE
algorithm, called Router-Level 2TLE (RL2TLE), that allows
to split virtual demands into equal sub-demands according to
the actual number of edge-routers grouped into the respective
virtual node(s). The LP of the first optimization step is given in
Problem 3. The Zij values denote the number of sub-demands
in which the demand between nodes i and j can be split. For
example, the virtual demand between the two virtual nodes in
Figure 1 would get a Z-value of 16 because it resembles 16
real demands (one for each pair of nodes). For each of them
a dedicated policy can be installed. The second optimization
step uses a TLE similar to the one described in [29].

This approach assumes that traffic is distributed equally
across the edge-routers of a PoP. While this might not always
be true in practice, we still believe that it is a valid assumption
since it is in the interest of operators to connect customers in
a way that the traffic is distributed more or less equally.

B. Data

We carry out evaluations on three sets of data. The first con-
sist of real topology and traffic data collected in the backbone
network of a globally operating Tier-1 ISP. Snapshots of the
respective network topology and the measured traffic matrix
are provided on a quarter-hour basis. For our evaluations,
we were given 19 snapshots from between March 2017 and
January 2021 with traffic matrices located in the daily peak-
hour. Due to network expansions, the respective topology
varies between snapshots. On average it comprises around 143
nodes and 900 edges and has a diameter of about 7.

Our second set of data also features data from the ISP
backbone. However, this time we tried to create instances that
are more challenging to optimize by mapping back more recent
traffic matrices (e.g., from 2021) to older expansion states of
the network (e.g., 2020). Since network traffic is generally
increasing over the years [9], this forces more traffic through

Table I: Overview over the selected Repetita instances.

Name Nodes Edges Identifier

DeutscheTelekom 30 110 A
Forthnet 62 124 B
Globenet 67 226 C
GtsCzechRepublic 32 66 D
RedBestel 84 202 E
Renater2008 33 86 F
Renater2010 43 112 G
Ulaknet 82 164 H
Uninett2010 74 202 I
Uunet 49 168 J

a network with lower capacity. We carried out this operation
for a large number of instances. Out of the resulting instances,
we discarded all those for which the SPR MLU was still below
100% and those for which the MCF MLU was above 100%,
as for those TE would be either not (strictly) necessary or
not particularly helpful, respectively. Out of the remaining
instances, we selected 10 to evaluate our algorithms on. Both
of the above datasets feature data that is virtualized in a similar
fashion as described in Section IV-A. Here, a single virtual
node corresponds to 50 to 150 edge-routers in practice.

To also evaluate MO on completely different networks, our
third dataset features ten uniformly selected instances from
the publicly available Repetita dataset [18] which are listed
in Table I. Those instances are often provided on a PoP-level
and, thus, likely also feature virtual nodes. However, there is
no information on which nodes are virtualized and how many
edge-routers are grouped into them. Hence, we just ignore
possible virtualizations and treat every node as a normal, single
router. This also allows us to evaluate the performance of our
MO algorithm for smaller, “unvirtualized” networks.

VII. EVALUATION RESULTS

In this section, we evaluate the performance of our newly
developed MO algorithm with regards to the achievable MLU
and the number of required policies.

A. Maximum Link Utilization

To assess the MLU optimization capabilities of our new
SC2SR algorithm we optimized each instance from our refer-
ence datasets with it. The results for the original ISP instances
are depicted in Figure 2a together with the MLU values
obtained with our reference algorithms (SPR, MCF, and 2SR).
It can be seen that for nearly all of the 19 evaluation instances
SC2SR performs as good as 2SR and is able to provide an
optimal solution. Only for instance M SC2SR is not able to
achieve the optimal MLU. However, it is still rather close to
the optimum and also performs better than 2SR.

Similar results can be observed for the backmapped ISP
dataset (see Figure 2b). The substantially higher SPR MLUs
indicate that our traffic backmapping approach seems to
have indeed created more challenging instances. Nonetheless,
SC2SR is still able to achieve optimal results for 8 out of
the 10 instances. For one of the two instances (G) that were
not solved optimally, 2SR is able to achieve a better MLU,
possibly due to its superior per-flow traffic control. However,
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Figure 2: MLUs achieved with different algorithms.
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Figure 3: Number of SR policies required by different algorithms.

it could also be a result of the limitations regarding influencing
policies implemented into our algorithm (cf. Section V-C)
that limit the explored solution space. Other MO algorithms
without this constraint might be able to achieve the optimal
MLU. For the second suboptimal instance (F ), 2SR is not able
to achieve a better MLU than SC2SR. Maybe, in this specific
scenario, the theoretical lower bound that is presented by MCF
is not reachable with TE approaches that have to adhere to
practical limitations. Even though there are two instances for
which SC2SR is not able to achieve the proven optimum, it
is still able to substantially reduce the MLU when compared
to SPR and prevents overutilization in all cases.

Results for the Repetita instances are depicted in Figure 2c.
It can be seen that 2SR as well as SC2SR are able to achieve
the optimal MLU of 0.9 for every instance. This confirms that
our MO algorithm is also able to find optimal solutions for
other (completely different) networks.

All in all, this evaluation shows that, regarding MLU, our
SC2SR algorithm is able to keep up with end-to-end SR
approaches. This is rather surprising because, as mentioned in
Section IV-C, MO lacks the fine-grained, per-demand traffic
control of end-to-end SR. While this can be a limiting factor in
theory, it does not appear to be of much relevance in practice.
It further needs to be remembered that SC2SR does not utilize
the capabilities of the IGP Shortcut MO approach to their
full extent. In order to enable an efficient LP formulation,
we had to limit the explored solution space (cf. Section
V-C). Theoretical examples can be constructed for which these

limitations can result in arbitrarily bad results. However, these
examples are carefully hand-crafted and far from a realistic
network design. In our real-world evaluation instances, we are
able to obtain optimal results in nearly every scenario.

B. Number of Required Policies

Following the evaluation of the primary objective of MLU
minimization, we now take a look at how many SR policies are
required to implement these solutions. We compare the number
of policies required by our SC2TLE algorithm to the ones
required by RL2TLE that utilizes end-to-end SR. This is done
for a trade-off coefficient of 0% which resembles the number
of policies required to obtain the best possible solutions as
they were shown in Section VII-A, and also for a trade-off
coefficient of 5%. The latter can be loosely understood as an
upper bound of the MLU deterioration that is acceptable in
practical scenarios to further reduce the number of policies.

The distributions of the results for the original ISP dataset
are depicted in Figure 3a. First of all, it can be seen that
the number of policies required by RL2TLE varies drastically
between instances. Some can be solved with as little as 8
policies while others require multiple thousands. The reasons
for this are those explained in Section IV-A. As soon as the
optimal solution requires detouring demands between edge-
PoPs (virtual nodes), the number of policies often increases
drastically because individual policies need to be configured
for most of the edge-routers. By using a trade-off coefficient
of 5%, the number of policies can be further reduced but there



are still instances that require hundreds and, in one case, more
than 2800 policies. It has to be remembered that RL2TLE is no
heuristic but provides the lowest possible number of policies
required to obtain the respective MLUs when using end-to-end
2SR. With MO and our new SC2TLE algorithm, significant
reductions in the number of policies can be achieved. Even for
a trade-off coefficient of 0% it requires at most 33 policies and
in most cases less than ten. When comparing these numbers
to the ones of end-to-end SR the reductions are enormous. For
some instances, they range up to more than 99% (e.g., instance
B). Even for instances for which end-to-end SR requires rather
low policy numbers, SC2TLE is often still able to undercut this
number. In fact, it never requires more policies than the end-to-
end approach. For the backmapped ISP instances (Figure 3b),
the number of policies required by RL2TLE is even higher
but the performance of SC2TLE and the qualitative results
are similar to the ones obtained on the original ISP instances.

Since we assume that the Repetita data does not feature
virtual nodes, we use 2TLE [29] to calculate the number of
policies required by end-to-end SR. Overall, the number of
policies is much smaller and, hence, the absolute reductions
achieved by SC2TLE are also lower (see Figure 3c). However,
it still enables substantial reductions of the policy numbers for
most instances. For example, 2TLE requires over 350 policies
for instance E, even when used with a trade-off coefficient
of 5%, while SC2TLE achieves the optimal MLU with just
9 policies. This illustrates that the benefits of our SC2TLE
algorithm are not limited to large networks and virtualized
data, but also apply to smaller, unvirtualized networks as well.

Detailed policy numbers for each instance are listed in
Table II in the appendix. For better readability they are sorted
in descending order with respect to the number of policies
required by RL2TLE. It also features information on the
actual number of policies that would be required to implement
solutions into practice that were obtained with the standard
2TLE algorithm. Those are computed by applying a weighting
to virtual policies as described in Section VI-A. The results
are listed in the column labeled “w2TLE” (weighted 2TLE).

C. Computation Times and Resource Demands

Like most LP-based approaches, SC2TLE is quite demand-
ing with regards to resources and computation times. For some
larger networks, it can take multiple hours and require a couple
hundred gigabytes of RAM to find the optimal solution. This
is perfectly acceptable when planning to use this algorithm as
intended by us, namely to optimize a network on a weekly (or
daily) basis. However, it is not designed and, hence, not suited
for sub-second optimization or quick, tactical re-optimizations
in failure scenarios. For such scenarios, dedicated heuristics
should be developed, which we plan to do in the future.

VIII. CONCLUSION

In this paper, we discussed the concept of MO for SR. It is
based on the idea of integrating SR policies into the IGP to
steer traffic into them. Contrary to the current end-to-end SR
approaches in which a dedicated policy has to be installed for

each demand that needs to be detoured, MO allows a single
policy to route multiple different demands. This enables TE
solutions with a substantially lower number of policies.

Besides a formal description of the MO concept and a
discussion of implementation related challenges, we developed
an optimization algorithm to assess the TE capabilities of MO.
Based on data from a Tier-1 ISP and the publicly available
Repetita [18] dataset, we showed that our MO algorithm is able
to achieve virtually optimal MLUs that are on par with current
end-to-end SR approaches. However, while the latter often
require multiple hundreds (if not thousands) of policies, our al-
gorithm achieves solutions of similar quality with a single-digit
number of policies in many cases, sometimes corresponding to
a reduction of more than 99%. This impressively demonstrates
the capabilities and benefits of MO for SR.

In the future, we plan to implement other approaches to
the MO concept to compare them to the one proposed here.
Furthermore, it might be worthwhile to examine the potential
of hybrid approaches that allow for a local activation of
MO capabilities on a per-router basis. This way, it might be
possible to combine the per-demand traffic control of end-to-
end SR with the exceptional low policy numbers of MO.

APPENDIX

Table II: Number of SR policies required by differ-
ent algorithms for the three datasets.

RL2TLE SC2TLE w2TLE
λ = 1.0 1.05 1.0 1.05 1.0 1.05

Instance

ISP Original

B 3961 2829 6 3 22653 22502
M 2722 51 7 2 2750 100
H 2128 209 8 6 22807 453
F 610 526 33* 11 783 756
K 182 148 6 3 254 153
J 180 131 11 9 263 162
L 106 54 4 3 205 54
D 89 46 22 4 302 152
O 84 35 13 7 261 106
I 81 31 4 3 154 53
N 47 12 9 5 106 56
S 46 23 4 2 252 102
R 32 3 3 1 250 50
P 30 8 5 3 151 58
G 12 9 7 4 160 9
Q 11 0 3 0 200 0
C 7 2 5 2 155 2
A 7 0 3 0 150 0
E 6 2 5 2 153 2

ISP Backmapped

A 15444 13782 8 7 68264 45006
B 11482 9300 8 7 45305 45302
F 1866* 592 18 10 2016 636
H 1757* 425 18 12 1765 535
J 860 741 20* 13 1274 965
C 448 380 10 7 611 458
G 368 259 10 4 723 524
D 257 223 9 5 310 304
E 112 71 6 4 160 118
I 35 15 11 5 208 105

Repetita

E 473 364 9 8 - -
G 166 91 42 16 - -
C 99 65 7 4 - -
D 68 34 17 6 - -
F 57 48 14 9 - -
H 55 51 3 2 - -
J 53 37 39* 19 - -
B 28 23 5 4 - -
I 24 12 9 5 - -
A 8 6 4 4 - -

* The asterisks mark optimizations that were aborted due to memory or
time limit exceedance. The respective values correspond to the currently
best lower and upper bound for RL2TLE and SC2TLE, respectively.
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