POSTER: Clouded Comparisons - On the Impact of Virtual
Machines on TCP-BBR Performance

Kathrin Elmenhorst, Nils Aschenbruck

Osnabriick University, Institute of Computer Science, Germany

Abstract

Recently, TCP performance studies [1, 3, 4, 8] have focused on BBR
which estimates the available bandwidth based on packet delay —
instead of strictly reacting to packet loss as a sign of congestion.
In contrast to packet loss, delay is more susceptible to jitter in-
duced by the various system components in experimental setups
and real-world deployments, including virtualization. Considering
that BBR deployments in the wild are often running in Cloud-based
virtualized environments, we measure how the choice of virtu-
alization affects BBR v1-3 throughput in different BBR-enabled
Linux kernels. Our results reveal that when using Google’s custom
kernels - the only publicly available source of BBRv2/v3 — BBR
performance deteriorates under virtualized scheduling conditions,
reducing throughput to almost zero in VirtualBox-based VMs. Over-
all, our work raises questions about the robustness of BBR under
certain sub-optimal scheduling conditions.

CCS Concepts

« Networks — Transport protocols; Cloud computing; Network
performance evaluation.

Keywords
BBR, TCP, Virtual Machine

ACM Reference Format:

Kathrin Elmenhorst, Nils Aschenbruck. 2025. POSTER: Clouded Compar-
isons - On the Impact of Virtual Machines on TCP-BBR Performance. In
ACM SIGCOMM 2025 Conference (SIGCOMM Posters and Demos °25), Sep-
tember 8—11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3744969.3748455

1 Introduction

The parameter space of TCP performance measurements is huge:
besides network (emulation) parameters, load generation, and pro-
tocol parametrization, we notice that some parameters are often
underestimated in measurement studies: the Linux kernel version
and virtualization. These two parameters are especially relevant in
the context of the growing adoption of BBR because a) BBRv2 and
v3 are only publicly available in custom kernels [5, 6], and b) virtu-
alization is known to impact BBR more heavily than former TCP
versions [7]. Thus, it is essential to understand the performance
implications of different kernels and virtual machines so that we
can interpret measurement results in a meaningful way.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM Posters and Demos °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2026-0/2025/09

https://doi.org/10.1145/3744969.3748455

Sender Emulator Receiver
(o o)) TCP|c: tion(s R
QEMU/KVM “ il ‘ L‘()HHEC ion(s) QEMU/KVM
kernelab | [B | kernel a.b

" VirtualBox | _— " VirtualBox |
kernel x.y tbf — netem kernel x.y

Figure 1: Measurement architecture.

BBR. BBR v1-3 are delay-based congestion control algorithms
(CCAs) which aim to send at the maximum bandwidth without
creating buffering latency [2]. After fast approaching the available
bandwidth during the exponential slow start, BBR drains built-up
queues, and varies between probing for more bandwidth (ProbeBW)
and the minimum RTT (ProbeRTT) [2]. BBRv1 was added to Linux
mainline kernels from version 4.19. To test newer BBR versions,
Google has made two custom kernels available [5, 6] which are
based on Linux v5.13 and v6.4, respectively. However, they diverge
significantly in many parts of the code base, even beyond TCP.

VM hypervisor types. While type 1 hypervisors such as KVM
are part of the Linux kernel and create VMs directly on the host’s
hardware, type 2 hypervisors, e.g., VirtualBox, run as applications
on top of the host’s operating system.

2 Method

Our approach is to study TCP-BBR throughput in QEMU/KVM and
VirtualBox VMs across recent mainline kernels and BBR-specific
custom kernels. To this end, we consider a variety of network
conditions and single vs. parallel TCP connections. As shown in
Fig. 1, we perform measurements using a traditional TCP setup
with two end hosts A and B, and an intermediate host as network
emulator. All hosts run Debian 12 with Linux v6, and have at least
4 physical CPU cores. The network emulator forwards IP packets
between A and B and employs Linux tc netem and token buckets
to emulate different network conditions, i.e., uniform packet loss
(0-0.1%), latency (10-100 ms RTT), and bandwidth (10-500 Mbps).

As stated above, we compare different types of VMs and differ-
ent BBR-enabled Linux kernels on the end hosts. We deploy both
QEMU/KVM and VirtualBox VMs which are configured with 16 GB
RAM, 4 virtual CPUs, and virtio network adapters to connect to the
host network. For the guests’ Linux kernels, we install the mainline
kernels used in Debian 11 and 12, i.e., v5.10 and v6.1, as well as the
two custom kernels provided by Google (google/bbr) [5, 6]. We do
not change kernel parameter defaults, with the exception of the
maximum socket buffer sizes, which we set to the highest allowed
value so that they do not become bottlenecks.

For each individual measurement, we parametrize the network
emulation and start a 20-second iperf3 bulk download where we

https://doi.org/10.1145/3744969.3748455
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744969.3748455

SIGCOMM Posters and Demos *25, September 8-11, 2025, Coimbra, Portugal

Avail. bandwidth: 10 mbps Avail. bandwidth: 500 mbps

Avail. bandwidth: 10 mbps

K. Elmenhorst et al.

Avail. bandwidth: 500 mbps Jog/vail- bandwidth: 500 mbps Avail. bandwidth: 500 mbps

100

Py p—— prr———— o . e CCA
® 80 = 80 © = 80 %ggg” 80
5 IS | > IS v2
£S5 w0 £5 w0 /i\ £5 w0 CIBBRV3| 60
S% S% \ / 8%
5£ w LRI 5£ 0 w
=3 =3 =3
- - - R el
0 0 -t e 0 - 0 s
J e —— —— — — L —— 100
_________ g —
= pra—— - | _
= 80 : = | S = 80 © 80
c'c c'c H I =<
5.8 52 52 60 60
S 23 1 LIS
= = = 40 40
| I T
E E l J | £ 2 20 %S
= = A) =T =
10ms RTT 100ms RTT 10ms RTT 100ms RTT 10ms RTT 100ms RTT 10ms RTT 100ms RTT 10ms RTT 100ms RTT 10ms RTT 100ms RTT
(a) QEMU/KVM, BBRv1 (b) VirtualBox, BBRv1 (c) QEMU/KVM (d) VirtualBox

Figure 2: Link utilization using different VMs with 0.1% packet loss. (c-d) show google/bbr kernels only.

configure the number of parallel connections and the CCA. We
repeat each run 30 times and measure the link utilization, i.e., the
achieved throughput relative to the bandwidth, across all runs.

3 Results

While our evaluation covered a wider range of measurement pa-
rameters, due to space limitations, this abstract will focus on the
main insights derived from our data. Fig. 2 shows the measured
link utilization in the 0.1% packet loss scenario using BBRv1 on all
tested kernels (2a, 2b), and additionally BBRv2, BBRv3, and Cubic
on the custom kernels (2c, 2d).

QEMU/KVM. On QEMU/KVM machines (Fig. 2a, 2c), TCP can
utilize almost the complete bandwidth with all BBR versions, except
for the highest bandwidth delay product scenario. As a side note,
when testing QEMU without KVM, we measure very similar yet
slightly more variant throughput.

VirtualBox. In the setup using VirtualBox (Fig. 2b), we observe
that BBR performance, especially in the custom kernels, deteriorates
heavily compared to using QEMU/KVM. Specifically, custom kernel
BBR drops to around 20% median link utilization for a single TCP
connection in the 10 Mbps scenario, and to almost zero in the 500
Mbps scenario. With four parallel connections, custom kernel 6.4
can achieve higher aggregated throughput, but the impact in the
500 Mbps scenario is still significant. As shown in Fig. 2d, the effect
occurs with all BBR versions in the custom kernels. In contrast,
Cubic achieves the same results in both VMs.

For the mainline kernels, BBR performance is overall better,
with most scenarios achieving the same high throughput compared
to QEMU/KVM. However, in the high-bandwidth scenarios, we
observe decreased throughput in v5.10 and v6.1 as well, although
the reduction is less pronounced.

Investigating the root cause of this unexpected effect, we observe
that the performance degradation is related to increased scheduling
latency. In particular, we observe a correlation of the effect and the
TCP kernel process experiencing scheduling delays in the range
of multiple milliseconds. Thus, it most likely cannot achieve the
goal delivery rate due to delayed sending and ACK processing. As
a consequence of the non-increasing delivery rate, BBR leaves slow
start prematurely and, thus, underestimate the available bandwidth.

Supporting this hypothesis, TCP socket analytics (TCP_CC_INFO)
reveal that BBR exits slow start almost immediately.

These results relate to existing work by Ha et al. [7] who the-
oretically analyzed degrading BBR performance during ProbeBW
when multiple VMs are sharing the same host resources, and ex-
perimented using NS3 and Mininet-based setups. Indicating a po-
tentially bigger problem, our real-system measurements show a
similar effect under different scheduling conditions and during a
different phase of the BBR algorithm (slow start).

Lastly, we investigate why the custom kernels are heavily af-
fected, while the mainline kernels can remain a high throughput
in most cases. When comparing the TCP source code between the
google/bbr kernels and their mainline counterparts, we observe
that a 2018 change in the CC module API was reverted in the cus-
tom kernels. This means that, in contrast to the mainline kernels,
the custom kernels give the CC module more control of TCP burst
sizes, i.e., they depend directly on BBR’s current bandwidth estimate.
Consequently, bandwidth underestimations have a stronger impact
on the delivery rate. In contrast, patched mainline BBR keeps up
burst sizes even during scheduling impairments. We successfully
validated this hypothesis by adding the respective google/bbr patch
#c20e56d [6] onto mainline v6.1 and repeating the measurements.

4 Takeaway and Future Work

Our findings show that BBR’s throughput performance can be
heavily affected by virtualized scheduling effects on the sender
side, especially if BBR runs on google/bbr kernels. While the prob-
lematic scenario involving the VirtualBox hypervisor — which is not
considered suitable for high performance workloads — can be seen
as an edge case, our measurements raise more general questions
about BBR performance under sub-optimal scheduling.

To better understand the scope and scale of the presented prob-
lem, further investigation is needed to identify and control the
(virtualized) scheduling patterns triggering the observed perfor-
mance degradation.

More generally, this work highlights the complexity of TCP mea-
surement parametrization and the involved risk of overlooking
relevant measurement scenarios. Thus, we aim to further investi-
gate methods for exploring this parameter space in a more reliable
and informative way.

POSTER: Clouded Comparisons

References
[1] YiCao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi. 2019.

B3

When to use and when not to use BBR: An empirical analysis and evaluation study.
In Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 130-136.
Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: congestion-based congestion control. Commun. ACM
60, 2 (Jan. 2017), 58-66. https://doi.org/10.1145/3009824

Soumyadeep Datta and Fraida Fund. 2023. Replication: "When to Use and When
Not to Use BBR". In Proceedings of the 2023 ACM on Internet Measurement Conference
(Montreal QC, Canada) (IMC °23). Association for Computing Machinery, New
York, NY, USA, 30-35.

SIGCOMM Posters and Demos ’25, September 8-11, 2025, Coimbra, Portugal

[4] Jose Gomez, Elie F. Kfoury, Jorge Crichigno, and Gautam Srivastava. 2024. Evalu-

ating TCP BBRv3 performance in wired broadband networks. Computer Commu-
nications 222 (2024), 198-208. https://www.sciencedirect.com/science/article/pii/
50140366424001658

Google. 2022. Google: TCP BBR v2 Alpha/Preview Release. https://github.com/
google/bbr/tree/v2alpha. [Last accessed: May 21, 2025, tag: v2alpha-2022-08-28].
Google. 2024. Google: TCP BBR v3 Release. https://github.com/google/bbr/tree/v3.
[Last accessed: May 21, 2025, tag: bbrv3-2024-11-22].

Phuong Ha, Minh Vu, Tuan-Anh Le, and Lisong Xu. 2021. TCP BBR in Cloud
Networks: Challenges, Analysis, and Solutions. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS). 943-953.

Danesh Zeynali, Emilia N. Weyulu, Seifeddine Fathalli, Balakrishnan Chan-
drasekaran, and Anja Feldmann. 2024. Promises and Potential of BBRv3. In
Passive and Active Measurement. Springer Nature Switzerland, Cham, 249-272.

https://doi.org/10.1145/3009824
https://www.sciencedirect.com/science/article/pii/S0140366424001658
https://www.sciencedirect.com/science/article/pii/S0140366424001658
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v3

	Abstract
	1 Introduction
	2 Method
	3 Results
	4 Takeaway and Future Work
	References

