
latest change: April 3, 2019

Documentation for RaLaNS

This document gives an introduction to the main elements of the propagation loss model.
RaLaNS [1] contains of two main parts, the ray launching, which can be used seperately, and
the ns-3 integration.

Table of Contents

1 Installing RaLaNS 2
1.1 Prerequisites . 2
1.2 Installation . 2
1.3 Test the environment . 2
1.4 Problem handling . 3

2 Structure 4
2.1 Files . 4

2.1.1 run.py . 4
2.1.2 viewer1d.py . 5
2.1.3 viewer2d.py . 5
2.1.4 viewer3d.py . 5
2.1.5 viewer[Circle]Scattered.py . 6
2.1.6 calculationServer.py . 6

2.2 Folders . 6

3 Additional information for the main program 7
3.1 Logging . 7
3.2 Parallel Calculation . 7
3.3 Map-Files . 7
3.4 Simulation Types . 8

3.4.1 Transmitter positions . 8
3.4.2 Receiver positions . 8

4 Configuration keys 9

5 Format of Result file: result.txt 12

6 Additional informations on cluster usage 13

7 Examples 13

8 Installation guide for ns-3 integration 15
8.1 Examples . 15
8.2 Troubleshooting . 16

References 17

1

1 Installing RaLaNS

1.1 Prerequisites

First install required packages for installation of RaLaNS. The given commands are suitable for
installation via the packagemanagement system apt-get given standard Ubuntu distributions.
For other Unix systems use equivalent commands for package installation.

sudo apt-get update
sudo apt-get install g++ python python-numpy python-matplotlib python-pp

python-setuptools python-lxml subversion python-opengl python-pygame python
-pip make

Installation of the utm package (for transformation of coordinates) is not possible through
apt-get:

pip install utm

1.2 Installation

cd <pathToRaLaNS>/ralans/src/launcher
make
cd <pathToRaLaNS>/ralans

Problems

If there is the following Error:

#error This file requires compiler and library support for the ISO C++ 2011
standard. This support is currently experimental, and must be enabled with
the \texttt-std=c++11 or -std=gnu++1 compiler options.

Uncomment the compiler options behind CFLAGS in:
<pathToRaLaNS>/ralans/src/launcher/Makefile

1.3 Test the environment

Now you should be able to successfully use RaLaNS.

python run.py inputfiles/small_street_flat.osm name='example'

As soon as the process ended successfully you can see the results.

python viewer2d.py outputfiles/small_street_flat_example.zip

More usage examples can be seen in 7.

2

1.4 Problem handling

If there is an error with multiarray not found, you might have an old version of pp, make
sure, you have the following version - On Ubuntu 14.04 or higher, this did not happen:

• pp (Parallel Python) 1.6.4

Try:

pip install pp

Or manual installation:

http://www.parallelpython.com/downloads/pp/pp-1.6.4.tar.gz
tar -xzf pp-1.6.4.tar.gz
cd pp-1.6.4
sudo python setup.py install

If other problems arise, check if you are using the following versions or higher:

• Python 2.7.4 (2.7.6 has been tested successfully, too)

• NumPy 1.7.1 (1.6.1 has been tested successfully, too)

• matplotlib 1.3.1 (1.4.3 has been tested successfully, too)

• Ubuntu 14.10 (13.04, 12.04 and LinuXMint 17.1 has been tested successfully, too)

3

2 Structure

2.1 Files

This main folder contains a software, that prepares a file with signal strengths for usage in
ns-3.

2.1.1 run.py

This is the main software, specify a mapfile as first param OR -g to generate a sample config-
uration file. Set -m as second param to generate a zipfile with prepared mapdata for instant
usage. All values in the sample configuration file are set by default. If you don’t need other
values, you don’t have to specify a configuration file as command parameter. The weighting of
the configuration values is the following: At first all default values will be restored. After that
the script overwrites the default values with the values from the configuration file. The last
step overwrites the current values with the values from the command line.

optional parameters

• configurationfile : File extension has to be ’cfg’, replaces default configuration with
your configuration.

• transmitterfile : File extension has to be ’tr’, you can specify several transmitter
positions.

• receiverfile : File extension has to be ’rec’, you can specify several receiver positions.

• <key>=<value> : Accepts every key in the configfile as commandline argument and re-
places current configuration with the value given, make sure that you don’t use spaces
in one argument. A list with names and descriptions of these parameters is given in
/src/config.py.

Usage

python run.py -g | mapfile [configfile] [transmitterfile] [receiverfile] [key=
value]* | mapfile -m

4

2.1.2 viewer1d.py

Visualizes a signal strength trend between two points, specify the zipfile of your calculation and
a point. Only usable for scenarios with receivertypes line, area or cubic.

optional parameters

• t <transmitter> : Loads coveragemap of specified transmitter [X,Y,Z].

• <point>to<point> : Displays the signal strength along a line between these specific
points.

• s <name> : Saves plot as <name>.png and <name>.pdf, has to be the last param.

If you want to display several signal trends in one plot, specify another (or the same) result
zipfile and a point.

Usage

python <input.zip> [t <transmitter>] <receiver>[to<reciever>] [<input.zip> [t
<transmitter>] <receiver>[to<reciever>] ...] [s <name>]

OR if your receiver-type is a line:

python <input.zip> l [t <transmitter>] [s <name>]

2.1.3 viewer2d.py

Visualizes a signal strength map, specify a result zipfile as first parameter. Only for scenarios
with receivertype area or cubic.

optional parameters

• <transmitter> : Loads coveragemap of specified transmitter [X,Y,Z].

• <layer> : Loads coveragemap of specified layer (only available if receiver simulation type
is ’cubic’).

• s <name> : Saves plot as <name>.png and <name>.pdf, has to be the last param.

If you want to visualize the difference between two coveragemaps, specify a second result zip
file.

Usage

python viewer2d.py <input.zip> [transmitter] [layer] [<input2.zip [transmitter
] [layer]] [s <name>]

2.1.4 viewer3d.py

Visualizes the map and rays, specify a result zipfile as first argument.

5

optional parameters

• <transmitter> : Loads rays of specified transmitter [X,Y,Z].

Usage

python viewer3d.py <input.zip> [transmitter]

2.1.5 viewer[Circle]Scattered.py

Visualizes the signal strength points on the map, specify a result zipfile as first parameter. Only
for scenarios with receivertype list / street.

optional parameters

• <transmitter> : Loads rays of specified transmitter [X,Y,Z].

• -b : Draws buildings.

Usage

python viewerCircleScattered.py <input.zip> [transmitter] [-b]

2.1.6 calculationServer.py

Run this program to receive a calculation task. DO NOT use this and run.py on the same
computer.

2.2 Folders

B src : Contains all the modules that are used by the software mentioned above.

B inputfiles : Put maps in here.

B configfiles : Configure the ray-launching with these files.

B ouputfiles : The outputfile that can be used in ns-3 will be put here.

B tmp : Auto-generated folder. All generated data for a scenario will be found here.

6

3 Additional information for the main program

3.1 Logging

run.py supports five different logging level, which affects, what is stored in the result zipfile.
Higher level contains all files of lower levels, specify the level in your configuration by using the
key debugLevel.

1 : zipfile contains configuration-files and the result-file for ns3

2 : adds needed files for 2d-viewer

3 : adds needed files for 3d-viewer

4 : stores the whole tmp-folder

5 : enables debug messages in logfile (might be interesting for developers)

debugRays: True - adds files to draw rays in 3d-Viewer

3.2 Parallel Calculation

If you calculate the signal for several transmitter positions, it can be performed parallel:

• specify the number of cpu-cores under the configuration-key ’numberWorkers’

You can also calculate the result on several computers. They will be used if you want to
calculate rays for more transmitter positions than you have cpu-cores.

• specify the ip-addresses of those computers under the configuration-key ’calculationServers’

• each of those computers has to run calculationServer.py

3.3 Map-Files

Currently supported are the following formats:

• City-GML. Please rename your file to <map>.gml

• Openstreetmap. Please rename your file to <map>.osm

• Files containing polygons. The last and first point should be the same. Please use the
file extension ’raw’.

7

3.4 Simulation Types

Simulation types are used to describe transmitter and receiver positions.

0 : Point, x y z

1 : Line, xstart ystart zstart xend yend zend steps

2 : Area, xmin ymin xmax ymax z xstep ystep

3 : Cubic, xmin ymin zmin xmax ymax zmax xstep ystep zstep

4 : List, size x0 y0 z0 ... xn yn zn

3.4.1 Transmitter positions

• if you want to calculate signals for one transmitter (default), set your transmitter position
under the configuration-key ’transmitters’, default is transmitters=[[0,0,1]]

• if you want to calculate signals for several transmitter, which are ordered in a line, specify
a transmitter-file as command argument

• if you want to calculate signals for all transmitter positions on your map, set the configuration-
key ’transmitters’ to ’area’. It generates transmitter positions all over the map,
the distance between each transmitter is specified in configuration-key ’stepSize’, the
configuration-key ’coverageLevel’ describes the height of each transmitter.

• for 3d coverage of your transmitters, set the configuration-key ’transmitters’ to ’cubic’.
It generates transmitter positions all over the map and between ’coverageLevel’ and
’coverageMaxLevel’ and with distance between each position specified in ’stepSize’.

• if you want to calculate signal for transmitters on specific points, you can either specify
them under the configuration-key ’transmitters’ (transmitters=[[0,0,1],[1,1,1],...])
or in a file as command argument

3.4.2 Receiver positions

• if you want to receive the signal strength in one point, set your receiver position under
the configuration-key ’receivers’ (for example: receivers=[[0,0,1]])

• if you want to place receivers along a line, specify a line in a file and set it as command
argument

• if you want to cover a whole area, set the configuration-key ’receivers’ to ’auto’ (default)

• if you want to cover a whole 3d-space, set ’receivers’ to ’auto’ and make sure that
’coverageMaxLevel’ is higher than ’coverageLevel’

• if you want to receive the signal at specific points, you can either specify them under
the configuration-key ’receivers’ (receivers=[[0,0,1],[1,1,1],...]) or in a file as
command argument

Please check the sample files ’sample_lines.tr’ and ’sample_list.rec’ in the configfolder.

Please also check the ’sample.cfg’ in the configfolder for further customization.

8

4 Configuration keys

Available configuration keys for RaLaNS are listed with their default configuration value in the
following table.

Key Default value Description

borders []

Usually the borders are determined from data, but
you can limit the coverage area manually here.
Format: [Left, Bottom, Right, Top].
For example: [-51, -27, 53, 21]

buildingHeight 10

sets the height of each building (used for OSM-
maps); osm maps usually do not contains heights
of buildings, set a overall building height

calculationsServers ()

you can distribute calculations to other comput-
ers, which are running calculationServer.py (only
used if you have more transmitters than ’number-
Workers’), (’ip1’,’ip2’,...)
Please read section 2.1.6 and section 3.2 before us-
age.

center None

Usually the center is determined from data and
used as origin, but you can choose a center manu-
ally in UTM (Universal Transverse Mercator) for-
mat.
Format: [Easting, Northing, 0.0].
sedanplatz example: [433663.812,5793036.36,0.0]

cluster False

set to True for internal clusterUsage, You can edit
the default settings above or set commands for all
three jobs in the following lines | it is recommended
to run the script with only -m as param before and
set the generated zipfile as inputfile

clusterArray None

set ArrayIndices to calculated transmitter with ids
in the given range, format: X_Y | X,Y start and
end indices

clusterCores None

has to be this syntax: select=X:ncpus=Y | where
X is the amount of nodes and Y is the amount of
cores. Usally you dont have to change the default
settings: select=1:ncpus=1

clusterLimit None
set the amount of parallel calculation at once on
cluster, only working on inf-cluster

clusterMail None your email-address
clusterMem None set the amount of memory your scripts use

clusterMsg None
’bea’ for messages if execution [b]egins, [e]nds and
[a]borts, you don’t have to write all 3 letters

clusterName None
the name which will be shown by qstat, _ is not
allowed on hpc2

clusterType 0
0: inf-cluster with Torque-System
1: hpc2 with PBSPro

9

Key Default value Description

clusterWtime None
time after your program will be aborted, defaults:
(hpc2: 48h), (inf: 168h)

coverageLevel 1
height at which 2d coverage calculation will be per-
formed

coverageMaxLevel 1
3d calculation will be performed between cover-
ageLevel and coverageMaxLevel

deadDistance 0.5 minimal distance between events

debugLevel 2

1: just config and outputfile
2: adds files for 2D-Viewer
3: adds files for 3D-Viewer
4: complete tmp-folder
5: adds debug-messages

debugRays False set True to draw rays in 3d-Viewer
diffractionThreshold 0.125*7 influence range of edges, 7×λ, λ = wavelength, [3]
groundHeight 0 sets height of ground (used for OSM-maps)
interference False enable (True)/ disable(False) multi-path effects
mapName None Don’t edit this. It will be set from the script.
maxIterations 50 force stop when a ray is reflected very often

name ’auto’

sets name of outputfile: <mapname>_name. Set
value to ’auto’ if you just want a timestamp
(%Y%m%d-%H%M%S) after mapname

maxRange 0

don’t calculate signal strength if distance between
receiver and transmitter is too far, will speed up
calculation for larger maps

numberWorkers 4

number of workers, only coverage maps are calcu-
lated in parallel, should be the number of cpu-cores
also see section 3.2

port None
not used, default port is 4242, you can change it
in src/util/networking.py

ppServers ()

specify tuple of ppServers for cluster computing
(doesn’t work, although it should -> incompat-
ible versions? network configuration? problem
finding raylauncher? unfortunately no useful er-
ror message) use param calculationServers if you
want parallel caluclation (replaces ppServers with
a self-built solution)

preprop True

set this to False if you already done the prepara-
tion for a map, make sure parameter ’name’ is the
same

rayNumber 5000 number of rays launched at sources

receivers ’auto’

set specific receiver here: if you want to calculate
just some links: [[0,0,1],[1,1,1],...],
for full coverage: ’auto’ or ’full’
for street coverage: ’street’

receiverType 0
Don’t change manually! It is set by the script,
default value: 0

10

Key Default value Description

receiveThreshold ’full’

size of “antenna”, set to full and it will be calcu-
lated by script to sqrt(3 · (ss2))/2, should be half
of stepSize

reflectionPart 0.153
sets what part of the incoming energy is reflected,
value according to [2]

scatteringPart 0.0181
sets what part of the incoming energy is scattered,
value according to [2]

stepSize 1
discretization of the coverage maps, receiver grid
distance

terrainHeight 2 resolution of terrain #ray-caster

terrainLevel ’auto’
make a flat terrain instead of analyzing building
heights

terrainWidth 2 resolution of terrain

timeout 0
timeout in seconds of a single job: one job is one
receiver <-> transmitter link

transmitters [[0, 0, 1]]

coverage maps will be calculated for each position,
use ’area’ or ’cubic’ for full coverage or ’street’ for
street coverage

transmitterType 0
Don’t change this value manually! It is set by the
script, default value: 0

transmitterHeight 1 used if transmitter are placed along streets

wavelength 3e8 / 2.4e9
3e8 / 2.4e9 = 0.125 is the wavelength [speed of
light / frequency] for 2.4 GHz antennas

Note: If coverageLevel = coverageMaxLevel it represents the receiverHeight.

11

5 Format of Result file: result.txt

The file generally consists of two parts: the header and the signal strengths generated by RaLaNS.
The exact format of the file is determined with regard to the transmitter and receiver types.

Header

In general the header comprises of two or three lines. The first line gives information on the
transmitters, the second line on the receivers. The first number in each of these lines depicts
the Simulation Types. The line continues with information according to the given simulation
type.

Signal strengths

After the header all calculated signal strengths are listed regarding the types of the transmitters
and receivers. The signal strengths are displayed as decibel values in scientific notation1. If the
strength is less than -1e+03, it will not be displayed in a corresponding plot. If the strength
equals -3.076526555685887615e+03 in ’result.txt’, there exists no signal between transmitter
and receiver. This value is the decibel value of the minimum positive floating point value, which
can be calculated using python with the following statement:

"\%.18E" \% decimal.Decimal(10.0*numpy.log10(sys.float_info.min))

Some formatting examples are given below. The following acronyms are used:

• Trans = Transmitter

• Recv = Receiver

• left, bottom, right, top → bounding box

• sSize = stepSize

• NorthingOffset : UTM Northing offset to center of map

• EastingOffset : UTM Easting offset to center of map

Point to Point

transType(0) TransX TransY TransZ
recvType(0) RecvX RecvY RecvZ
signal strengths from receivers to transmitter

Point to Area

transType(0) TransX TransY TransZ
recvType(2) left bottom right top coverage(Max)Level sSize sSize
signal strengths of all receivers in area to transmitter

1https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=731282070#E_notation

12

https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=731282070#E_notation

Point to Cubic

transType(0) TransX TransY TransZ
recvType(3) left bottom coverageLevel right top coverageMaxLevel sSize sSize

sSize
signal strengths of all receivers in area to transmitter

Point to List

transType(0) TransX TransY TransZ
recvType(4) #receiver <NorthingOffset EastingOffset coverage(Max)Level>
left bottom right top
signal strengths from receivers to transmitter

List to List

transType(4) #transmitter <NorthingOffset EastingOffset transmitterHeight>
recvType(4) #receiver <NorthingOffset EastingOffset coverageLevel>
left bottom right top
for each transmitter a row, each column represents a receiver

6 Additional informations on cluster usage

There must be at least two transmitters for cluster calculation. If speed from cluster with only
one transmitter in a scenario is needed, randomly set a second transmitter. Calculation will be
equivalent fast as with only one transmitter.

Every transmitter in a scenario will generate a process on the cluster.

7 Examples

Basic Example

Computing signal strengths:

python run.py inputfiles/small_street_flat.osm name='example'

Get a 2D result view:

python viewer2d.py outputfiles/small_street_flat_example.zip

Advanced Debugging Example

You can get a 3D debugging view with:

python run.py inputfiles/small_street_flat.osm name='debug' debugLevel=5
debugRays=True

python viewer3d.py outputfiles/small_street_flat_debug.zip [0,0,1]

13

Preparing a file for ns-3

For usage in ns-3, you will usually need to calculate several virtual transmitter positions in order
to place devices arbitrarily later on in ns-3. This calculation will last a bit longer (2 minutes
on an an Intel i7):

python run.py inputfiles/small_street_flat.osm name='cover' stepSize=5
transmitters='area'

Visualize signal strength distributions for different transmitter postions:

python viewer2d.py outputfiles/small_street_flat_cover.zip [3,2,1]
python viewer2d.py outputfiles/small_street_flat_cover.zip [53,2,1]

Scaling

When playing with the size of the map, the stepSize and the rayNumber, you will soon run into
long calculation times. For a slight speedup you can limit the ray launching to a certain area
around the transmitter and to positions on streets (the next step will be approx. 10 minutes
on an Intel i7):

python run.py inputfiles/sedanplatz.osm name='streets' maxRange=350 stepSize=5
transmitters=[[0,0,1]] receivers='street' rayNumber=100000

Plotting is slightly different, too:

python viewerScattered.py outputfiles/sedanplatz_streets.zip -b

14

8 Installation guide for ns-3 integration

This installation was done on Ubuntu 14.04.

Before downloading and installing ns-3 the usual way, do

sudo apt-get install python-dev python-pygccxml python-numpy python-matplotlib

For using the calculation for lists, you have to download ANN:

sudo apt-get install libann0 libann-dev

Then download and install ns-3 the usual way (see tutorial). For example look at this tutorial:
https://www.nsnam.org/docs/tutorial/html/getting-started.html

Copy files from this order into the order containing the waf script (ns-3-dev/ in older versions,
simply something like ns-3.21/ in newer versions). More explanation to the copy process:

• You need to copy all C++ files, so also the RaLaNSALone and RaLaNSList, because the
NS3RaLaNS is based on that one.

• So if you are in a folder similar to ns-3.21, you have to put all the C++ files in the folder
src/propagation/model/.

• Then you also need to update the wscript, either by just replacing it in src/propagation
or integrating the necessary content into the existing file. If you have not added any new
modules to that wscript, then replacing is the easier option. If you have already added
new stuff to that wscript, then you can just add the lines, which have a comment with
the word necessary.

Now you are good to go:

python ralanstest.py -m coverage/small_street_flat_example.zip -s 1 -d 1

If you need information about how to use ralanstest.py, just type:

python ralanstest.py -h

If you want to set some default values for the ralanstest script, then you an just open it and
change the constants at the beginning of the file with valid values.

For your own simulations, you can use a result from the raylauncher (in ralans/outputfiles)
just like the examplefile coverage/small_street_example.zip. Look at ralanstest.py and
scratch/ralans_example.py for a usage example.

8.1 Examples

The following examples should give you an idea of what you are able to do with this software.
The input files are the same ones as the ones, that you might have generated on your own using
the examples for RaLaNS itself.

15

https://www.nsnam.org/docs/tutorial/html/getting-started.html

Simple example from above

python ralanstest.py -m coverage/small_street_flat_example.zip -s 1 -d 1

Interpolation

The ns-3 RaLaNS extension offers interpolation between values, so you can use smaller step
sizes than in the input file.

python ralanstest.py -m coverage/small_street_flat_example.zip -s 0.3 -d 1

Transceivers

Usually you will want to use an inputfile with multiple virtual transmitters and receivers, so
you can place transceivers wherever you want.

python ralanstest.py -m coverage/small_street_flat_cover.zip -s 1 -d 5 -t
[-20,0,1]

python ralanstest.py -m coverage/small_street_flat_cover.zip -s 1 -d 5 -t
[20,0,1]

Streets

You can use a file with transmitters and receivers only on streets as well (ignore the messages
about receivers far away - this comes from only having receivers along the streets).

python ralanstest.py -m coverage/sedanplatz_streets.zip -s 5 -d 5 -b
[-472,-407,479,515]

8.2 Troubleshooting

ns.applications not found python bindings not enabled in ns3.24 (fixed in ns3.24.1):

see: https://www.nsnam.org/wiki/Ns-3.24-errata

or short, type:

./waf configure --enable-examples --enable-tests --with-pybindgen=../pybindgen
-0.17.0.post41+ngd10fa60

16

https://www.nsnam.org/wiki/Ns-3.24-errata

References

[1] T. Hänel, A. Bothe, and N. Aschenbruck. “RaLaNS: A ray launching based propagation
loss model for ns-3”. In: Proceedings of the International Conference and Workshops on
Networked Systems (NetSys). 2015, pp. 1–7. doi: 10.1109/NetSys.2015.7089069.

[2] O. Landron, M. J. Feuerstein, and T. S. Rappaport. “In situ microwave reflection coefficient
measurements for smooth and rough exterior wall surfaces”. In: Proceedings of the 43rd
IEEE Vehicular Technology Conference. 1993, pp. 77–80. doi: 10.1109/VETEC.1993.
510972.

[3] U. M. Stephenson and U. P. Svensson. “An improved energetic approach to diffraction
based on the uncertainty principle”. In: Proceedings of the 19th Int. Congress on Acoustics
(ICA ’07). 2007. url: http://akutek.info/Papers/US_Uncertainty_Principle.pdf.

17

http://dx.doi.org/10.1109/NetSys.2015.7089069
http://dx.doi.org/10.1109/VETEC.1993.510972
http://dx.doi.org/10.1109/VETEC.1993.510972
http://akutek.info/Papers/US_Uncertainty_Principle.pdf

	Installing RaLaNS
	Prerequisites
	Installation
	Test the environment
	Problem handling

	Structure
	Files
	run.py
	viewer1d.py
	viewer2d.py
	viewer3d.py
	viewer[Circle]Scattered.py
	calculationServer.py

	Folders

	Additional information for the main program
	Logging
	Parallel Calculation
	Map-Files
	Simulation Types
	Transmitter positions
	Receiver positions

	Configuration keys
	Format of Result file: result.txt
	Additional informations on cluster usage
	Examples
	Installation guide for ns-3 integration
	Examples
	Troubleshooting

	References

