

a Smart App for Fast Leaf Area Index Retrieval

Jan Bauer¹, Bastian Siegmann², Thomas Jarmer², Nils Aschenbruck¹

Institute of Computer Science, University of Osnabrück, Germany

¹Distributed Systems, ²Remote Sensing and Digital Image Processing

MobiCom App Contest 2016, New York - 2016/10/04

Leaf Area Index (LAI) in agricultural context

- parameter describing photosynthetic performance and vital condition of plants
- key variable in various models, e.g. yield models
- indicator for yield-reducing processes

$$LAI = \frac{(one-sided) green leaf area}{ground surface area}$$

Smart fLAIr's objective: a fast and cost-efficient LAI assessment

Methodology

- radiation-based LAI estimation
- Ambient Light Sensor (ALS)
- above (A) + below (B) canopy light measurements

$$LAI = -\omega * ln\left(\frac{\bar{B}}{\bar{A}}\right)$$

Special Features (optional)

- selfie stick operation
- sensor accessory: diffuser and optical filter cap

WSN connectivity (via USB or Bluetooth)

Video Demo: Smart fLAIr in the wild

Thank you for your attention!

