Constraint Checking for Business Process Management

Wolfgang Runte
University of Osnabrueck
Institute of Computer Science
Software Engineering Research Group
Albrechtstr. 28, 49076 Osnabrueck
Germany
woru@informatik.uni-osnabrueck.de
http://www.inf.uos.de/se

Marwane El Kharbili
ARIS Research, IDS Scheer AG
Altenkesselerstr. 17
66115 Saarbruecken
Germany
marwane.elkharbili@ids-scheer.com
http://www.ids-scheer.com

Luebeck – INFORMATIK 2009
Workshop on Business Process Modeling and Realization (BPMR-GI'09)

October 2, 2009
Constraint Checking for Business Process Management

Outline of the talk:

1. Introduction
2. Consistent Configurations through Constraint Satisfaction
3. Examples
4. Multi-Level Constraint Problem
5. Static and Dynamic Use of Constraints
6. Summary
1. Introduction

- Management of dependencies between business processes:
 - Problem: inconsistent process models – potential errors may occur at run-time.
 - Inconsistencies should be discovered in an early stage of modelling.
 - Reduce in time and cost of process maintenance.
 - Increased compliance to requirements on processes.
 - Requirements of business processes depend partly on complex relations between the processes.
 - Usually the results of a foregoing process are needed by a subsequent/concurrent one.

- Dependencies are relations between arbitrary attributes of business processes, examples are:
 - sequential dependencies
 - hierarchical dependencies
1. Introduction

... more precisely

- **Sequential dependencies:**
 - Relations between processes in a sequential order.
 - Relations between the input/output values: the output of a foregoing process is needed as input of a subsequent process.

- **Hierarchical dependencies:**
 - One or more processes can be sub-item(s) of a higher-ordered process.
 - Relations between lower and higher-ordered processes.
 - Relations between the input/output values of the first/last sub-process and the input/output of the higher-ordered process.
2. Consistent Configurations through Constraint Satisfaction

- Consistent configurations of business processes with methods out of the field of artificial intelligence (AI).
 - *Knowledge-based configuration*: using *constraint satisfaction* to model complex relations between (attributes of) components.

- *Constraints* as relations between attributes of processes:
 - algebraic constraints: intensional relations \rightarrow equations/inequations
 - to reduce the possible assignments to variables (problem reduction)
 - for the (early) detection of inconsistencies
 - to generate solutions for a certain problem

- *Constraint Satisfaction*:
 - Characteristic: Propagation of changes throughout a “constraint net”.
 - Techniques for the handling of combinatorial and numerical problems.
A Constraint Satisfaction Problem (CSP) is a triple $CSP(V,D,C)$:

$V = \{v_1, \ldots, v_n\}$ a finite set of variables

$D = \{D_1, \ldots, D_n\}$ associated value domains $\{v_1 : D_1, \ldots, v_n : D_n\}$

C a finite set of constraints $c_i(V_i)$, $i \in \{1, \ldots, m\}$, with

$c_i(V_i)$ to set the subset $V_i = \{v_{i_1}, \ldots, v_{i_k}\} \subseteq V$ in relation,

solution space for $c_i(V_i)$: $\{D_{i_1} \times \ldots \times D_{i_k}\}$

Example:

- Variables: a and b each with the value domain \{0,1,2,3,4,5,6,7,8,9\}
- Constraints: $a + b = 10$ and $a - b = 2$
- Solution: $a = 6$ and $b = 4$
- Note: Besides arithmetic domains also symbolic domains are feasible.
Example of a constraint graph: *map colouring problem*

nodes \rightarrow constraint variables
edges \rightarrow constraints

A possible solution for this CSP:

\[X = \{\text{red, green, blue}\} \]
\[Y = \{\text{red, green, blue}\} \]
\[Z = \{\text{red, green, blue}\} \]
Example: *sequential dependency*

- A constraint has to be satisfied in order that a process is allowed to be the successor of a foregoing process.

![Diagram](image)

- Process 1: attribute: `a`
 - Constraint pin: $v_1 \leftarrow a$
 - Constraint relations: $0 < v_1 + v_2 < 10$

- Process 2: attribute: `b`
 - Constraint pin: $v_2 \leftarrow b$
3. Examples

Example: *hierarchical dependency*

- A constraint has to be defined to specify processes to be allowed to be nested sub-items of upper processes, in order to satisfy all requirements of super- and sub-processes.
4. Multi-Level Constraint Problem

• Goal: Handle different levels of nested business processes.

• Flexibility: Different layers of processes in hierarchies define different sub-problems.
 – the need to define different solutions strategies,
 – application of problem specific solving algorithms.

• For each sub-problem another solution strategy can be applied depending on:
 – the value domain of the involved variables,
 – the problem structure defined by the constraint net.

• Integration of local solutions of sub-processes has to be done on the higher-ordered level leading to global solutions and hence globally consistent configurations.
5. Static and Dynamic Use of Constraints

- **Usage of constraint relations for business processes:**
 - **static use → at modelling time:** consistent process model
 - **dynamic use → at runtime:** consistent state of a process instance

- **Static use at modelling time:**
 - constraints connect input/output variables or attributes of processes
 - test for solutions and/or inconsistencies of the static model
 - Example: \(a > b; a = [0..4], b = [5..9] \) → inconsistent model

- **Dynamic use at runtime:**
 - test for solutions and/or inconsistencies during the execution of the business processes
 - user input or calculation results lead to reduced solution space
 - Example: \(a \geq b; a = [0..9], b = [0..9] \) → user input: \(b = 5 \) → \(a = [5..9], b = 5 \)
6. Summary

• Management of dependencies between business processes.

• Avoiding inconsistencies in business process modelling using constraint satisfaction (static/dynamic use).

• Constraints can be used to define arbitrary relations between attributes of business processes, e.g.
 - sequential and
 - hierarchical dependencies.

• Nested sub-problems on different abstraction levels:
 - can be seen as multi-level constraint problem,
 - results have to be integrated to upper levels for global solutions.
Thank you for your attention!
Constraints, Constraint Satisfaction Problem

- **Constraints** as relations between attributes of processes:
 - algebraic constraints: intensional relations → equations/inequations
 - to reduce the possible assignments to variables (problem reduction)
 - for the (early) detection of inconsistencies

- **Constraint Satisfaction Problem (CSP):**
 - Characteristic: Propagation of changes throughout a “constraint net”.
 - Techniques for the handling of combinatorial and numerical problems.
 - In the focus of intensive research and experiences for decades.
 - Efficient algorithms and heuristics:
 - reduction of the problem size/solution space
 - efficient generation of solutions
 - guarantee that specific relations hold